Local Policy Search in a Convex Space and Conservative Policy Iteration as Boosted Policy Search
نویسندگان
چکیده
Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a parameterized policy space in order to maximize the associated value function averaged over some predefined distribution. The best one can hope in general from such an approach is to get a local optimum of this criterion. The first contribution of this article is the following surprising result: if the policy space is convex, any (approximate) local optimum enjoys a global performance guarantee. Unfortunately, the convexity assumption is strong: it is not satisfied by commonly used parameterizations and designing a parameterization that induces this property seems hard. A natural solution to alleviate this issue consists in deriving an algorithm that solves the local policy search problem using a boosting approach (constrained to the convex hull of the policy space). The resulting algorithm turns out to be a slight generalization of conservative policy iteration; thus, our second contribution is to highlight an original connection between local policy search and approximate dynamic programming.
منابع مشابه
Guided Policy Search as Approximate Mirror Descent
Guided policy search algorithms can be used to optimize complex nonlinear policies, such as deep neural networks, without directly computing policy gradients in the high-dimensional parameter space. Instead, these methods use supervised learning to train the policy to mimic a “teacher” algorithm, such as a trajectory optimizer or a trajectory-centric reinforcement learning method. Guided policy...
متن کاملGuided Policy Search via Approximate Mirror Descent
Guided policy search algorithms can be used to optimize complex nonlinear policies, such as deep neural networks, without directly computing policy gradients in the high-dimensional parameter space. Instead, these methods use supervised learning to train the policy to mimic a “teacher” algorithm, such as a trajectory optimizer or a trajectory-centric reinforcement learning method. Guided policy...
متن کاملPolicy Search: Any Local Optimum Enjoys a Global Performance Guarantee
Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a parameterized policy space in order to maximize the associated value function averaged over some predefined distribution. It is probably commonly believed that the best one can hope in general from such an approach is to get a local optimum of this criterion. In t...
متن کاملSolving POMDPs by Searching in Policy Space
Most algorithms for solving POMDPs itera tively improve a value function that implic itly represents a policy and are said to search in value function space. This paper presents an approach to solving POMDPs that repre sents a policy explicitly as a finite-state con troller and iteratively improves the controller by search in policy space. Two related al gorithms illustrate this approach. ...
متن کاملBounded Finite State Controllers
We describe a new approximation algorithm for solving partially observable MDPs. Our bounded policy iteration approach searches through the space of bounded-size, stochastic finite state controllers, combining several advantages of gradient ascent (efficiency, search through restricted controller space) and policy iteration (less vulnerability to local optima).
متن کامل