Factors of r - partite graphs and bounds for the 1 Strong Chromatic Number 2 Anders Johansson
نویسندگان
چکیده
5 We give an optimal degree condition for a tripartite graph to have 6 a spanning subgraph consisting of complete graphs of order 3. This 7 result is used to give an upper bound of 2∆ for the strong chromatic 8 number of n vertex graphs with ∆ ≥ n/6. 9
منابع مشابه
Factors of r-partite graphs
We give sufficient conditions for a tripartite graph to have a spanning subgraph consisting of complete graphs of order 3. This is applied to bound the strong chromatic number of a graph.
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملOn Chromatic Uniqueness of Complete Complete 6-Partite Graphs
Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted G ∼ H, if P (G,λ) = P (H,λ). We write [G] = {H|H ∼ G}. If [G] = {G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs G with 6n + i vertices for i = 0, 1, 2 according to the number of 7-independent partitions o...
متن کاملUpper Bounds of Dynamic Chromatic Number
A proper vertex k-coloring of a graph G is dynamic if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic k-coloring is the dynamic chromatic number χd(G). We prove in this paper the following best possible upper bounds as an analogue to Brook’s Theorem, together with the determination of chromatic...
متن کامل