A Protein Solvation Model Based on Residue Burial.

نویسندگان

  • Nicoletta Ceres
  • Marco Pasi
  • Richard Lavery
چکیده

The influence of solvent on the individual amino acids of a protein depends not simply on their surface exposure but rather on the degree of their burial within the structure. This property can be related to a simple geometrical measure termed circular variance. Circular variance depends on the spatial distribution of neighboring residues and varies from zero to one as a residue becomes buried. Its only adjustable parameter is a cutoff distance for selecting neighbors. Here, we show that circular variance can be used to build a fast and effective model of protein solvation energies. For this, we combine a coarse-grain protein representation with statistical potentials derived by Boltzmann inversion of circular variance probability distributions for different classes of pseudoatom within a large protein structure database. The method is shown to work well for distinguishing native protein structures from decoy structures generated in a variety of ways. It can also be used to detect specific residues in unfavorable solvent environments. Compared to surface accessibility, circular variance calculations are faster, less sensitive to small conformational changes, and able to account for the longer-range interactions that characterize the electrostatic component of solvent effects. The resulting solvation energies can be used alone or as part of a more general coarse-grain protein model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast accurate evaluation of protein solvent exposure.

Protein solvation energies are often taken to be proportional to solvent-accessible surface areas. Computation of these areas is numerically demanding and may become a bottleneck for folding and design applications. Fast graph-based methods, such as dead-end elimination (DEE), become possible if all energies, including solvation energies, are expressed as single-residue and pair-residue terms. ...

متن کامل

Evaluation of local structure alphabets based on residue burial.

Residue burial, which describes a protein residue's exposure to solvent and neighboring atoms, is key to protein structure prediction, modeling, and analysis. We assessed 21 alphabets representing residue burial, according to their predictability from amino acid sequence, conservation in structural alignments, and utility in one fold-recognition scenario. This follows upon our previous work in ...

متن کامل

Secondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study

     In this study, the effect of the secondary structure of the protein on the acid strength of three structures of random (R), alpha helix (α) and beta sheet (b) were investigated theoretically. These structures are related to the cationic amino acids of histidine and lysine in the polypeptide chain of eight-glycine residue. Computational methods at the HF, B3LYP, X3LYP and M05-2X levels in t...

متن کامل

Evaluation of atomic level mean force potentials via inverse folding and inverse refinement of protein structures: atomic burial position and pairwise non-bonded interactions.

Two atomic level knowledge-based mean force interaction potentials (KBPs), a centrosymmetric burial position term and a long-range pairwise term, were developed. These were tested by comparing multiple configurations of three structurally unrelated proteins and were found successfully to (i) discriminate native state proteins from grossly misfolded structures in inverse folding tests, (ii) rank...

متن کامل

Computational protein design is a challenge for implicit solvation models.

Increasingly complex schemes for representing solvent effects in an implicit fashion are being used in computational analyses of biological macromolecules. These schemes speed up the calculations by orders of magnitude and are assumed to compromise little on essential features of the solvation phenomenon. In this work we examine this assumption. Five implicit solvation models, a surface area-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2012