Chronic morphine treatment alters endogenous opioid control of hippocampal mossy fiber synaptic transmission.

نویسندگان

  • John M Harrison
  • Richard G Allen
  • Michael J Pellegrino
  • John T Williams
  • Olivier J Manzoni
چکیده

Synaptic adaptations are thought to be an important component of the consequences of drug abuse. One such adaptation is an up-regulation of adenylyl cyclase that has been shown to increase transmitter release at several inhibitory synapses. In this study the effects of chronic morphine treatment were studied on mossy fiber synapses in the guinea pig hippocampus using extracellular field potential recordings. This opioid-sensitive synapse was chosen because of the known role of the adenylyl cyclase cascade in the regulation of glutamate release. Long-term potentiation (LTP) at the mossy fiber synapse was enhanced after chronic morphine treatment. In control animals, opioid antagonists increased LTP but had no effect in morphine-treated guinea pigs. In contrast, the long-lasting depression of transmission induced by a mGluR agonist and CA1 LTP were not altered. Chronic morphine treatment neither caused tolerance to mu- and kappa-receptor-mediated inhibition at the mossy fiber synapse nor modified total hippocampal dynorphin levels. The results suggest that the phasic inhibition of glutamate transmission mediated by endogenous opioids is reduced after chronic exposure to morphine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers.

Low-frequency stimulation of hippocampal mossy fiber axons in zinc-deficient adult rats produced synaptic responses that declined in amplitude with successive stimuli. This response decrement is abnormal and suggests that the heavy deposits of zinc in mossy fiber boutons are important for synaptic transmission.

متن کامل

The Hippocampal Mossy Fiber Synapse: Transmission, Modulation and Plasticity

Chemical synapses are key elements for the communication between nerve cells. This communication can be regulated on various time scales and through different mechanisms affecting synaptic transmission. Amongst these are slow and long-lasting adjustments by endogenous neuromodulators, instantaneous and reversible activitydependent regulation by short-term plasticity and persistent activity-depe...

متن کامل

Molecular components of tolerance to opiates in single hippocampal neurons.

We examined the effect of acute and chronic opioid treatment on synaptic transmission and mu-opioid receptor (MOR) endocytosis in cultures of naïve rat hippocampal neurons. Opioid agonists that activate MOR inhibited synaptic transmission at inhibitory but not excitatory autapses. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), morphine, and methadone were all effective at blocking inhibit...

متن کامل

Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.

The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using ...

متن کامل

Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission.

Selective serotonin reuptake inhibitors (SSRIs) have been used to treat various psychiatric disorders. Although the cellular mechanisms underlying amelioration of particular symptoms are mostly unknown, recent studies have shown critical importance of the dentate gyrus of the hippocampus in behavioral effects of SSRIs in rodents. Here, we show that serotonin potentiates synaptic transmission be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2002