Estimation of Normalized Coherency Matrix through the Sirv Model. Application to High Resolution Polsar Data

نویسندگان

  • G. Vasile
  • J.-P. Ovarlez
  • F. Pascal
  • M. Gay
چکیده

In the context of non-Gaussian polarimetric clutter models, this paper presents an application of the recent advances in the field of Spherically Invariant Random Vectors (SIRV) modelling for coherency matrix estimation in heterogeneous clutter. The complete description of the POLSAR data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. The main advantages of the proposed Fixed Point estimator are that it does not require any ”a priori” information about the probability density function of the texture (or span) and it can be directly applied on adaptive neighbourhoods. Interesting results are obtained when coupling this Fixed Point estimator with an adaptive spatial support based on the scalar span information. Based on the SIRV model, a new maximum likelihood distance measure is introduced for unsupervised POLSAR classification. The proposed method is tested with airborne POLSAR images provided by the RAMSES system. Results of entropy/alpha/anisotropy decomposition, followed by unsupervised classification, allow discussing the use of the normalized coherency and the span as two separate descriptors of POLSAR data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polsar Classification Based on the Sirv Model with a Region Growing Initialization

Polarimetry has been studied for many years in SAR. Due to the enormous quantity of SAR images acquired by satellites or airborne systems, there is an evident need for efficient automatic analysis tools. Classification algorithms are one of the main applications for PoLSAR data. Nowadays, fully polarimetric high resolution sensors can commonly reach up to decimeter resolutions. This yields a hi...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Mapping mountain meadow with high resolution and polarimetric SAR data

This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first exte...

متن کامل

Four-component Scattering Power Decomposition Using Rotated Coherency Matrix

Since the successful launch of ALOS in 2006, we have seen significant advances in the utilization of fully polarimetric SAR (PolSAR) data. We are now in the phase of PolSAR applications for sensing and monitoring the Earth’s environment. Specific application areas include natural and man-made disaster monitoring, forest monitoring, crop assessment, oceanography, etc. In this report, a method of...

متن کامل

On Single-look Multivariate G Distribution for PolSAR Data

For many applications where High Resolution (HR) Synthetic Aperture Radar (SAR) images are required, like urban structures detection, road map detection, marine structures and ship detection etc., single-look processing of SAR images may be desirable. The G family of distributions have been known to fit homogeneous to extremely heterogeneous Polarimetric SAR (PolSAR) data very well and can be v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009