Flow Characteristics and Robustness of an Inclined Quad-vortex Range Hood

نویسندگان

  • Jia-Kun CHEN
  • Rong Fung HUANG
چکیده

A novel design of range hood, which was termed the inclined quad-vortex (IQV) range hood, was examined for its flow and containment leakage characteristics under the influence of a plate sweeping across the hood face. A flow visualization technique was used to unveil the flow behavior. Three characteristic flow modes were observed: convex, straight, and concave modes. A tracer gas detection method using sulfur hexafluoride (SF6) was employed to measure the containment leakage levels. The results were compared with the test data reported previously in the literature for a conventional range hood and an inclined air curtain (IAC) range hood. The leakage SF6 concentration of the IQV range hood under the influence of the plate sweeping was 0.039 ppm at a suction flow rate of 9.4 m(3)/min. The leakage concentration of the conventional range hood was 0.768 ppm at a suction flow rate of 15.0 m(3)/min. For the IAC range hood, the leakage concentration was 0.326 ppm at a suction flow rate of 10.9 m(3)/min. The IQV range hood presented a significantly lower leakage level at a smaller suction flow rate than the conventional and IAC range hoods due to its aerodynamic design for flow behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and characterization of an inclined quad-vortex range hood.

In order to increase containment efficiency and reduce energy consumption, an inclined quad-vortex range hood (IQV range hood) was developed and tested by experimental methods. The flow structure was observed by a laser-assisted flow visualization technique and laser Doppler velocimetry (LDV). Leakage characteristics were measured by the tracer gas (sulfur hexafluoride) detection method. By arr...

متن کامل

Flow and containment characteristics of a sash-less, variable-height inclined air-curtain fume hood.

To increase containment efficiency and reduce energy consumption, a sash-less, variable-height inclined air-curtain fume hood (sIAC hood) was developed and tested by a laser-assisted flow visualization technique and tracer-gas detection method. This novel design requires neither sash nor baffle. The sIAC hood employed the inclined push-pull air-curtain technique and two deflection plates instal...

متن کامل

Flow characteristics of an inclined air-curtain range hood in a draft

The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization tech...

متن کامل

Development and characterization of an inclined air-curtain (IAC) fume hood.

An inclined air-curtain (IAC) fume hood was developed and characterized using the laser-assisted smoke flow visualization technique and tracer-gas (sulphur hexafluoride) concentration detection method. The IAC fume hood features four innovative design elements: (i) an elongated suction slot installed at the hood roof with an offset towards the rear wall, (ii) an elongated up-blowing planar jet ...

متن کامل

Impact of Magnetic Field on Convective Flow of a Micropolar Fluid with two Parallel Heat Source

A numerical study is performed to analysis the buoyancy convection induced by the parallel heated baffles in an inclined square cavity. The two side walls of the cavity are maintained at a constant temperature. A uniformly thin heated plate is placed at the centre of the cavity. The horizontal top and bottom walls are adiabatic. Numerical solutions of governing equations are obtained using the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014