ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence.
نویسندگان
چکیده
Mutations in the ClC-1 muscle chloride channel cause either recessive or dominant myotonia congenita. Using a systematic screening procedure, we have now identified four novel missense mutations in dominant (V286A, F307S) and recessive myotonia (V236L, G285E), and have analysed the effect of these and other recently described mutations (A313T, I556N) on channel properties in the Xenopus oocyte expression system. Mutations V286A, F307S and A313T displayed a 'classical' dominant phenotype: their voltage dependence was shifted towards positive potentials and displayed a dominant-negative effect by significantly imparting a voltage shift on mutant-wild-type heteromeric channels as found in heterozygous patients. In contrast, the recessive mutation V236L also shifted the voltage dependence to positive values, but co-expression with wild-type ClC-1 gave almost wild-type currents. I556N, a mutation found in patients with benign dominant myotonia, drastically shifts the voltage dependence, but only a slight shift is seen when co-expressed with wild-type ClC-1. Thus, the voltage dependence of mutant heteromeric channels is not always intermediate between those of the constituent homomeric channel subunits, a conclusion further supported by mixing different ClC-1 mutants. These complex interactions correlate clinically with various inheritance patterns, ranging from autosomal dominant with various degrees of penetrance to autosomal recessive.
منابع مشابه
Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations.
The muscle Cl- channel, ClC-1, is a member of the ClC family of voltage-gated Cl- channels. Mutations in CLCN1, the gene encoding this channel, cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen). The functional characterization of these naturally occurring mutations not only allowed a better understanding of the...
متن کاملFunctional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes☆
Myotonia congenita (MC) is caused by loss-of-function mutations of the muscle ClC-1 chloride channel. Clinical manifestations include the variable association of myotonia and transitory weakness. We recently described a cohort of recessive MC patients showing, at a low rate repetitive nerves stimulation protocol, different values of compound muscle action potential (CMAP) transitory depression,...
متن کاملPhysiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia
The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Th...
متن کاملElectrophysiological characteristics of R47W and A298T mutations in CLC-1 of myotonia congenita patients and evaluation of clinical features
Myotonia congenita (MC) is a genetic disease that displays impaired relaxation of skeletal muscle and muscle hypertrophy. This disease is mainly caused by mutations of CLCN1 that encodes human skeletal muscle chloride channel (CLC-1). CLC-1 is a voltage gated chloride channel that activates upon depolarizing potentials and play a major role in stabilization of resting membrane potentials in ske...
متن کاملA CLCN1 mutation in dominant myotonia congenita impairs the increment of chloride conductance during repetitive depolarization.
Myotonia congenita is caused by mutation of the CLCN1 gene, which encodes the human skeletal muscle chloride channel (ClC-1). The ClC-1 protein is a dimer comprised of two identical subunits each incorporating its own separate pore. However, the precise pathophysiological mechanism underlying the abnormal ClC-1 channel gating in some mutants is not fully understood. We characterized a ClC-1 mut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 7 11 شماره
صفحات -
تاریخ انتشار 1998