Koszul Duality and Equivalences of Categories

نویسنده

  • GUNNAR FLØYSTAD
چکیده

Let A and A! be dual Koszul algebras. By Positselski a filtered algebra U with grU = A is Koszul dual to a differential graded algebra (A!, d). We relate the module categories of this dual pair by a⊗−Hom adjunction. This descends to give an equivalence of suitable quotient categories and generalizes work of Beilinson, Ginzburg, and Soergel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 54 92 v 1 [ m at h . R A ] 2 9 O ct 2 00 7 Koszul Equivalences in A ∞ - Algebras

We prove a version of Koszul duality and the induced derived equivalence for Adams connected A∞-algebras that generalizes the classical Beilinson-Ginzburg-Soergel Koszul duality. As an immediate consequence, we give a version of the Bernšte˘ ın-Gel'fand-Gel'fand correspondence for Adams connected A∞-algebras. We give various applications. For example, a connected graded algebra A is Artin-Schel...

متن کامل

Operadic Koszul Duality

1. OPERADS Our goal in this talk is to give a sort of categorified version of “Koszul duality”. One of the primary motivations for us to do so is to take the classical results about Koszul duality, which form a convoluted and complex body of literature, and stretch them apart to see which assumptions power which parts of the theory. Classically, Koszul duality results are concerned chiefly with...

متن کامل

Linear Koszul Duality

In this paper we construct, for F1 and F2 subbundles of a vector bundle E, a “Koszul duality” equivalence between derived categories of Gm-equivariant coherent (dg-)sheaves on the derived intersection F1 R ∩EF2, and the corresponding derived intersection F ⊥ 1 R ∩E∗F ⊥ 2 . We also propose applications to Hecke algebras.

متن کامل

Gale Duality and Koszul Duality

Given a hyperplane arrangement in an affine space equipped with a linear functional, we define two finite-dimensional, noncommutative algebras, both of which are motivated by the geometry of hypertoric varieties. We show that these algebras are Koszul dual to each other, and that the roles of the two algebras are reversed by Gale duality. We also study the centers and representation categories ...

متن کامل

Koszul Duality for Toric Varieties

We show that certain categories of perverse sheaves on affine toric varieties Xσ and Xσ∨ defined by dual cones are Koszul dual in the sense of Beilinson, Ginzburg and Soergel [BGS]. The functor expressing this duality is constructed explicitly by using a combinatorial model for mixed sheaves on toric varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000