The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane

نویسنده

  • K. ZAHNLE
چکیده

We use a 1-D numerical model to study the atmospheric photochemistry of oxygen, methane, and sulfur after the advent of oxygenic photosynthesis. We assume that mass-independent fractionation (MIF) of sulfur isotopes – characteristic of the Archean – was best preserved in sediments when insoluble elemental sulfur (S 8 ) was an important product of atmospheric photochemistry. Efficient S 8 production requires three things: (i) very low levels of tropospheric O 2 ; (ii) a source of sulfur gases to the atmosphere at least as large as the volcanic SO 2 source today; and (iii) a sufficiently high abundance of methane or other reduced gas. All three requirements must be met. We suggest that the disappearance of a strong MIF sulfur signature at the beginning of the Proterozoic is better explained by the collapse of atmospheric methane, rather than by a failure of volcanism or the rise of oxygen. The photochemical models are consistent in demanding that methane decline before O 2 can rise (although they are silent as to how quickly), and the collapse of a methane greenhouse effect is consistent with the onset of major ice ages immediately following the disappearance of MIF sulfur. We attribute the decline of methane to the growth of the oceanic sulfate pool as indicated by the widening envelope of mass-dependent sulfur fractionation through the Archean. We find that a given level of biological forcing can support either oxic or anoxic atmospheres, and that the transition between the anoxic state and the oxic state is inhibited by high levels of atmospheric methane. Transition from an oxygen-poor to an oxygen-rich atmosphere occurs most easily when methane levels are low, which suggests that the collapse of methane not only caused the end of MIF S and major ice ages, but it may also have enabled the rise of O 2 . In this story the early Proterozoic ice ages were ended by the establishment of a stable oxic atmosphere, which protected a renewed methane greenhouse with an ozone shield. Received 14 June 2006; accepted 11 August 2006 Corresponding author: K. Zahnle. Tel.: 650 604 0840; fax: 650 604 6779; e-mail [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Contributions of Liquid - Phase Sulfur Chemistry to the Mass - Independent Sulfur Fractionation of the Archean Rock Record by MASSACH OFT Sebastian Hermann Kopf

Archean sulfur mass-independent fractionation (S-MIF) has been widely recognized as one of the strongest indicators for the rise of atmospheric oxygen in the Early Proterozoic. A decade after its discovery, the wide-ranging implications of Archean sulfur MIF have been discussed extensively and despite a number of recent studies on the gas-phase chemistry of sulfur, no definite overall picture h...

متن کامل

Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.

Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (> 2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO2 photolysis. We have used a one-dimensional photochemical model to investigate how the...

متن کامل

Atmospheric influence of Earth's earliest sulfur cycle

Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, imp...

متن کامل

Mass-independent sulfur isotope fractionation during photochemistry of sulfur dioxide

Mass-independent sulfur isotope signatures are observed in Archean and early Paleoproterozoic sedimentary sulfate and sulfide minerals, and provide the most robust constraints on early atmospheric oxygen levels. Smaller mass-independent sulfur isotope anomalies are observed in ice cores and interpreted as a tracer of stratospheric volcanic loading. Photochemistry of sulfur dioxide (SO 2) has be...

متن کامل

Anaerobic methanotrophy and the rise of atmospheric oxygen.

In modern marine sediments, the anoxic decomposition of organic matter generates a significant flux of methane that is oxidized microbially with sulphate under the seafloor and never reaches the atmosphere. In contrast, prior to ca 2.4Gyr ago, the ocean had little sulphate to support anaerobic oxidation of methane (AOM) and the ocean should have been an important methane source. As atmospheric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006