Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum
نویسندگان
چکیده
The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria.
منابع مشابه
Ape parasite origins of human malaria virulence genes
Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmod...
متن کاملA Comparative in vitro Study of the Effect of Eosin B on Asexual Blood Stages and Gametocyte of Plasmodiun falciparum
Background and Objective: Malaria is one of the most life-threatening infectious diseases worldwide. Transmission of the parasite from human to vector mosquitoes is carried out by the gametocyte of the Plasmodium parasite, while these cells are not involved in the symptoms of the disease. The control of the human to mosquito transmission stage of the parasite life cycle by antigametocyte drugs...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملClinical Pharmacology of the Antimalarial Artemisinin-Based Combination and other Artemisinins in Children
In 2010, there were estimated 219 million cases of malaria resulting in 666,000 deaths and two-thirds were children. Children are more vulnerable than adults to malaria parasites. In sub-Saharan African countries, maternal malaria is associated with up to 200,000 estimated infant deaths yearly. Malaria is caused by five Plasmodium parasites namely: Plasmodium falciparum, Plasmodium vivax, Plasm...
متن کاملThe Use of Crude Plasmodium falciparum Antigens for Comparison of Antibody Responses in Patients with Mild Malaria vs. Cerebral Malaria
Background: Cerebral malaria (CM) is one of the major causes of death in African populations infected with Plasmodium falciparum. Only 1% of infected subjects develop CM. The reasons for these differences are not fully understood, but it is likely that the host humoral response against blood-stage antigens plays a role in protection from malaria, although the precise targets and mechanisms medi...
متن کامل