In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade.

نویسندگان

  • Faith C H Li
  • Julie Y H Chan
  • Samuel H H Chan
  • Alice Y W Chang
چکیده

Heat shock proteins (HSPs) represent a group of highly conserved intracellular proteins that participate in protective adaptation against cellular stress. We evaluated the neuroprotective role of the 70-kDa HSP (HSP70) and the 90-kDa HSP (HSP90) at the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic vasomotor tone, during fatal endotoxemia. In Sprague-Dawley rats maintained under propofol anesthesia, Escherichia coli lipopolysaccharide (30 mg/kg, i.v.) induced a decrease (phase I), followed by an increase (phase II; "pro-life" phase) and a secondary decrease (phase III; "pro-death" phase) in the power density of the vasomotor component of systemic arterial pressure spectrum, along with progressive hypotension or bradycardia. Proteomic and Western blot analyses revealed that whereas HSP70 expression in the RVLM was significantly augmented during phases I and II and returned to baseline during phase III endotoxemia, HSP90 protein expression remained constant. The increase in HSP70 level was significantly blunted on pretreatment with microinjection of the transcription inhibitor actinomycin D or protein synthesis inhibitor cycloheximide into the bilateral RVLM. Functional blockade of HSP70 in the RVLM by an anti-HSP70 antiserum or prevention of synthesis by an antisense hsp70 oligonucleotide exacerbated mortality or potentiated the cardiovascular depression during experimental endotoxemia, alongside significantly reduced nitric-oxide synthase (NOS) I or protein kinase G (PKG) level or augmented NOS II or peroxynitrite level in the RVLM. We conclude that whereas HSP90 is ineffective, de novo synthesis of HSP70 in the RVLM may confer neuroprotection during fatal endotoxemia by preventing cardiovascular depression via enhancing the sympathoexcitatory NOS I/PKG signaling pathway and inhibiting the sympathoinhibitory NOS II/peroxynitrite cascade in the RVLM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Shock Protein 70 Confers Cardiovascular Protection During Endotoxemia via Inhibition of Nuclear Factor- B Activation and Inducible Nitric Oxide Synthase Expression in the Rostral Ventrolateral Medulla

Background—Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located, plays a pivotal role in the manifestation of fatal cardiovascular depression during endotoxemia. The iNOS gene is regulated transcriptionally by nuclear factorB (NFB) activation. The present study tested the hypothesis that h...

متن کامل

Ovariectomy upregulates expression of estrogen receptors, NOS, and HSPs in porcine platelets.

Platelets participate in normal and pathological thrombotic processes. Hormone replacement in postmenopausal women is associated with increase risk for thrombosis. However, little is known regarding how platelets are affected by hormonal status. Nitric oxide (NO) modulates platelet functions and is modulated by hormones. Therefore, the present study was designed to determine how loss of ovarian...

متن کامل

Nitric Oxide Synthases I and II Are Localized in Neurons

Recent studies [3] revealed that both nitric oxide (NO) synthase (NOS) isoforms NOS I and NOS II in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located [18], are tonically active under physiologic conditions. The prevalence of NOS I over NOS II activity at the RVLM and the associated dominance of sympathoexcitation over sympathoinhibition may underlie the ma...

متن کامل

Brain-Derived Neurotrophic Factor Ameliorates Brain Stem Cardiovascular Dysregulation during Experimental Temporal Lobe Status Epilepticus

BACKGROUND Status epilepticus (SE) is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM), a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neu...

متن کامل

Vanadate is a potent activator of endothelial nitric-oxide synthase: evidence for the role of the serine/threonine kinase Akt and the 90-kDa heat shock protein.

We investigated the molecular mechanisms of sodium vanadate (vanadate)-induced nitric oxide (NO) production. Exposure of bovine lung microvascular cells (BLMVEC) to vanadate increased the release of biologically active NO in endothelium/smooth muscle cocultures, as measured by the accumulation of its surrogate marker, cGMP. This release was sensitive to NO synthase (NOS) inhibition and was grea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 68 1  شماره 

صفحات  -

تاریخ انتشار 2005