Simulating disorder-order transitions in molecular recognition of unstructured proteins: where folding meets binding.
نویسندگان
چکیده
A microscopic study of functional disorder-order folding transitions coupled to binding is performed for the p27 protein, which derives a kinetic advantage from the intrinsically disordered unbound form on binding with the phosphorylated cyclin A-cyclin-dependent kinase 2 (Cdk2) complex. Hierarchy of structural loss during p27 coupled unfolding and unbinding is simulated by using high-temperature Monte Carlo simulations initiated from the crystal structure of the tertiary complex. Subsequent determination of the transition-state ensemble and the proposed atomic picture of the folding mechanism coupled to binding provide a microscopic rationale that reconciles the initiation recruitment of p27 at the cyclin A docking site with the kinetic benefit for a disordered alpha-helix in the unbound form of p27. The emerging structural polarization in the ensemble of unfolding/unbinding trajectories and in the computationally determined transition-state ensemble is not determined by the intrinsic folding preferences of p27 but rather is attributed to the topological requirements of the native intermolecular interface to order beta-hairpin and beta-strand of p27 that could be critical for nucleating rapid folding transition coupled to binding. In agreement with the experimental data, the disorder-order folding transition for p27 is largely determined by the functional requirement to form a specific intermolecular interface that ultimately dictates the folding mechanism and overwhelms any local folding preferences for creating a stable alpha-helix in the p27 structure before overcoming the major free energy barrier.
منابع مشابه
Folding transitions during assembly of the eukaryotic mRNA cap-binding complex.
The cap-binding protein eIF4E is the first in a chain of translation initiation factors that recruit 40S ribosomal subunits to the 5' end of eukaryotic mRNA. During cap-dependent translation, this protein binds to the 5'-terminal m(7)Gppp cap of the mRNA, as well as to the adaptor protein eIF4G. The latter then interacts with small ribosomal subunit-bound proteins, thereby promoting the mRNA re...
متن کاملThe Role of Disordered Ribosomal Protein Extensions in the Early Steps of Eubacterial 50 S Ribosomal Subunit Assembly
Although during the past decade research has shown the functional importance of disorder in proteins, many of the structural and dynamics properties of intrinsically unstructured proteins (IUPs) remain to be elucidated. This review is focused on the role of the extensions of the ribosomal proteins in the early steps of the assembly of the eubacterial 50 S subunit. The recent crystallographic st...
متن کاملEditorial overview: Folding and binding: Dynamic conformational heterogeneity is pivotal to cell life.
To function, a macromolecule needs to be in a distinct conformational state and to interact with its partner(s). Macromolecular folding and binding are decisive events in the life of a cell; aberrancy in either process can lead to dysfunction and occasionally to cell death. For decades, efforts have centered on the so-called protein folding problem. Even though understanding deepened and much p...
متن کاملP-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملP-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2003