Compartmentalization Evaluated to Explain Discrepancies Calculating Cartilage Fixed Charge
نویسندگان
چکیده
Recent studies on methods of detecting the early onset of arthritic cartilage degradation using NMR-based techniques have shown that such detection is possible. The use of sodium NMR observations, along with an ideal Donnan single compartment model of cartilage, has already been validated as a means of measuring cartilage fixed charge density a known indicator of cartilage condition. Similar calculations of fixed charge density from proton (in the presence of gadopentetate) NMR observations and the same model were highly correlated with, but 50% below, values derived from sodium NMR. Maroudas had previously shown the water content of cartilage to be divided with a roughly 30:70 ratio between two physiologically distinct regions. The first of these regions, within cartilage collagen fibrils, is electroneutral, with most of the tissue fixed charge, in the form of chondroitin sulfate, being concentrated in the remainder of the tissue, the second region. The existence of two compartments, with different associated fixed charge densities, is shown, by spreadsheet computations and analysis of previously published data, to be a possible reason for the observed 50% discrepancy. High-concentration chondroitin sulfate solutions within dialysis tubing bags were equilibrated in solutions containing sodium and gadopentetate ions. This solution/tubing apparatus mimicked an ideal Donnan single compartment. MR measurements of the amounts of the two ions and calculations of fixed charge density in the solutions based on the measurements yielded the same 50% factor. Since this artificial model did not include any collagen, there were no compartmentalization effects due to structural factors. A similar single-compartment was done using a non-ionic contrast agent to test for steric exclusion based compartmentalization. Although MR measurements revealed a discrepancy in contrast agent distribution, the discrepancy was exactly opposite what should have been observed had steric exclusion been a factor. In summary, it seemed clear that compartmentalization of water (from either cartilage structure or from steric exclusion) was not primarily responsible for the observed 50% discrepancy. Another explanation must be found. Thesis Supervisors: Deborah Burstein, Ph.D. Associate Professor of Radiology Beth-Israel Hospital Harvard Medical School Martha L. Gray, Ph.D. J.W. Kieckhefer Professor of Electrical Engineering Department of Electrical Engineering and Computer Science MIT and Harvard-MIT Division of Health Science and Technology
منابع مشابه
Few heuristic optimization algorithms to solve the multi-period fixed charge production-distribution problem
This paper deals with a multi-period fixed charge production-distribution problem associated with backorder and inventories. The objective is to determine the size of the shipments from each supplier and backorder and inventories at each period, so that the total cost incurred during the entire period towards production, transportation, backorder and inventories is minimised. A 0-1 mixed intege...
متن کاملHigh Quality of Infant Chondrocytes in Comparison with Adult Chondrocytes for Cartilage Tissue Engineering
BACKGROUND Tissue engineering is used for the treatment of many diseases, and the ideal cell source for cartilage tissue engineering is chondrocytes. The main limitation of chondrocyte is the low number of cells in cartilage tissue engineering. This study investigated a suitable cell source with high proliferation rate to obtain a large number of chondrocytes. METHODS Adult cartilage t...
متن کاملSOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM
In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...
متن کاملCalculating charge radius for proton with hyper central interacting color potential
An improved M.I.T. bag model with hyper central interaction is used to calculate the charge radius for proton containing u and d quarks. We present a theoretical approach to the internal structure of three-body hyper central interacting quarks in a proton, in which we take proton as a bag. We discuss a few of results obtained using a six-dimension potential, which is attractive for small separa...
متن کاملSuperficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a mu...
متن کامل