Reinforcement Learning for Modeling Large-Scale Cognitive Reasoning
نویسندگان
چکیده
Accurate, relevant, and timely combat identification (CID) enables warfighters to locate and identify critical airborne targets with high precision. The current CID processes included a wide combination of platforms, sensors, networks, and decision makers. There are diversified doctrines, rules of engagements, knowledge databases, and expert systems used in the current process to make the decision making very complex. Furthermore, the CID decision process is still very manual. Decision makers are constantly overwhelmed with the cognitive reasoning required. Soar is a cognitive architecture that can be used to model complex reasoning, cognitive functions, and decision making for warfighting processes like the ones in a kill chain. In this paper, we present a feasibility study of Soar, and in particular the reinforcement learning (RL) module, for optimal decision making using existing expert systems and smart data. The system has the potential to scale up and automate CID decision-making to reduce the cognitive load of human operators.
منابع مشابه
A Case Study in Integrating Probabilistic Decision Making and Learning in a Symbolic Cognitive Architecture: Soar Plays Dice
One challenge for cognitive architectures is to effectively use different forms of knowledge and learning. We present a case study of Soar agents that play a multiplayer dice game, in which probabilistic reasoning and heuristic symbolic knowledge appear to play a central role. We develop and evaluate a collection of agents that use different combinations of probabilistic decision making, heuris...
متن کاملInvestigate Diagnostic validity of the third edition of the new Wadkock-Johnson Cognitive Ability Scale in Learning Disabled Students in Ahvaz city
The purpose of this study was to investigate Learning disability diagnostic validation by Woodcock-Johnson III Tests of Cognitive Abilities in Ahvaz city. Statistical Society this study includes all male and female students with learning disabilities from the first to fifth grade of elementary school in Ahvaz. In the academic year 2012-2013, from the state and non-governmental centers, the indi...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملThe Outcomes of Ethics Education to Medical Students Based on Moral Reasoning Models
Introduction: For years, the importance of medical ethics education in medical schools has been emphasized but there is no consensus over learning goals yet. This study aimed to investigate the learning outcomes of medical ethics education based on models of moral reasoning. Methods: This study is a review using proper keywords in databases such as Medline, Web of Science, Scoupus, and Eric li...
متن کاملReinforcement learning and counterfactual reasoning explain adaptive behavior in a changing environment
Animals routinely adapt to changes in the environment in order to survive. Though reinforcement learning may play a role in such adaptation, it is not clear that it is the only mechanism involved, as it is not well suited to producing rapid, relatively immediate changes in strategies in response to environmental changes. This research proposes that counterfactual reasoning might be an additiona...
متن کامل