On rotationally symmetric Kähler-Ricci solitons

نویسنده

  • Chi Li
چکیده

In this note, using Calabi’s method, we construct rotationally symmetric KählerRicci solitons on the total space of direct sum of fixed hermitian line bundle and its projective compactification, where the curvature of hermitian line bundle is Kähler-Einstein. These examples generalize the construction of Koiso, Cao and Feldman-Ilmanen-Knopf. 1 A little motivation In [1], the authors constructed some examples of gradient Kähler-Ricci soliton. Among them is the shrinking soliton on the Bl0C . They also glue this to an expanding soliton on C to extend the Ricci flow across singular time. Recently, La Nave and Tian [7] studied the formation of singularity along Kähler-Ricci flow by symplectic quotient. The idea is explained by the following example. Let C∗ act on C by t · (x1, · · · , xm, y1, · · · , yn) = (t x1, · · · , t xm, t−1 y1, · · · , t−1 yn) S ⊂ C∗ preserves the standard Kähler structure on C: ω = √ −1( m

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Noncompact Koiso-type Solitons

We construct complete gradient Kähler–Ricci solitons of various types on the total spaces of certain holomorphic line bundles over compact Kähler–Einstein manifolds with positive scalar curvature. Those are noncompact analogues of the compact examples found by Koiso [On rotationally symmetric Hamilton’s equations for Kähler–Einstein metrics, in Recent Topics in Differential and Analytic Geometr...

متن کامل

The Modelling of Degenerate Neck Pinch Singularities in Ricci Flow by Bryant Solitons

In earlier work, carrying out numerical simulations of the Ricci flows of families of rotationally symmetric geometries on S3, we have found strong support for the contention that (at least in the rotationally symmetric case) the Ricci flow for a “critical” initial geometry– one which is at the transition point between initial geometries (on S3) whose volume-normalized Ricci flows develop a sin...

متن کامل

Non-kähler Ricci Flow Singularities That Converge to Kähler–ricci Solitons

We investigate Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities with the property that parabolic rescalings at the singularities converge to singularity models taking the form of shrinking Kähler–Ricci solitons. More specifically, the singularity models for these solutions are given by the “blowdown soliton” discovered in [FIK03]. Our results support th...

متن کامل

ar X iv : 1 30 7 . 47 46 v 1 [ m at h . D G ] 1 7 Ju l 2 01 3 RIGIDITY OF ASYMPTOTICALLY CONICAL SHRINKING GRADIENT RICCI SOLITONS

We show that if two gradient Ricci solitons are asymptotic along some end of each to the same regular cone ((0,∞)× Σ, dr + r2gΣ), then the soliton metrics must be isometric on some neighborhoods of infinity of these ends. Our theorem imposes no restrictions on the behavior of the metrics off of the ends in question and in particular does not require their geodesic completeness. As an applicatio...

متن کامل

Stability of Gradient Kähler-ricci Solitons

We study stability of non-compact gradient Kähler-Ricci flow solitons with positive holomorphic bisectional curvature. Our main result is that any compactly supported perturbation and appropriately decaying perturbations of the Kähler potential of the soliton will converge to the original soliton under Kähler-Ricci flow as time tends to infinity. To obtain this result, we construct appropriate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011