Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A-X excitation schemes.

نویسندگان

  • Wolfgang G Bessler
  • Christof Schulz
  • Tonghun Lee
  • Jay B Jeffries
  • Ronald K Hanson
چکیده

Laser-induced fluorescence (LIF) has proven a reliable technique for nitric oxide (NO) diagnostics in practical combustion systems. However, a wide variety of different excitation and detection strategies are proposed in the literature without giving clear guidelines of which strategies to use for a particular diagnostic situation. We give a brief review of the high-pressure NO LIF diagnostics literature and compare strategies for exciting selected transitions in the A-X(0, 0), (0, 1), and (0, 2) bands using a different detection bandpass. The strategies are compared in terms of NO LIF signal strength, attenuation of laser and signal light in the hot combustion gases, signal selectivity against LIF interference from O2 and CO2, and temperature and pressure sensitivity of the LIF signal. The discussion is based on spectroscopic measurements in laminar premixed methane-air flames at pressures between 1 and 60 bars and on NO and O2 LIF spectral simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 2) excitation.

Laser-induced fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. The commonly applied D-X(0, 1) or A-X(0, 0) schemes are restricted to atmospheric-pressure flames and engines driven with gaseous fuels because of strong attenuation of the exciting laser beam by combustion intermediates. The properties of a detection scheme for which...

متن کامل

Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation.

Three different high-pressure flame measurement strategies for NO laser-induced fluorescence (LIF) with A-X(0,0) excitation have been studied previously with computational simulations and experiments in flames up to 15 bars. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increase...

متن کامل

Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation.

A-X(0,1) excitation is a promising new approach for NO laser-induced fluorescence (LIF) diagnostics at elevated pressures and temperatures. We present what to our knowledge are the first detailed spectroscopic investigations within this excitation band using wavelength-resolved LIF measurements in premixed methane/air flames at pressures between 1 and 60 bar and a range of fuel/air ratios. Inte...

متن کامل

Experimental evaluation of strategies for quantitative laser-induced-fluorescence imaging of nitric oxide in high-pressure flames (1–60 bar)

Nitric oxide laser-induced-fluorescence (NO-LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high-pressure flames (1–60 bar). This work builds on previous research that identified interference LIF from O2 and CO2 in high-pressure flames and optimized the choice of excitation strategies as a function of application conditions. In this study, design rul...

متن کامل

Quantification of NO A-X (0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames.

Laser-induced-fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. NO A-X(0, 2) excitation at 248 nm recently found applications in internal-combustion engines. We assess the collisional processes that influence quantification of signal intensities in terms of saturation, rotational energy transfer, and line broadening, using laminar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 42 24  شماره 

صفحات  -

تاریخ انتشار 2003