Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures
نویسندگان
چکیده
Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO₂ concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4'-hexafluoroisopropylidene diphthalic anhydride) -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO₂/CH₄ mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.
منابع مشابه
Mathematical Modeling of Carbon Dioxide Removal from the CO2/CH4 Gas Mixture Using Amines and Blend of Amines in Polypropylene: A Comparison between Hollow Fiber Membrane Contactor and Other Membranes
In this work, a mathematical model is established to describe the removal of CO2 from gaseous mixtures including CH4 and CO2 in a polypropylene hollow fiber membrane contactor in the presence of conventional absorbents such as monoethanolamine (MEA), methyldiethanolamine (MDEA), and a blend of them. Modeling was performed in axial and radial directions under the fully-wet condition for counterc...
متن کاملFunctionalized Polymeric Membranes for CO2 Capture
Reducing CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of membrane materials with high separation performance ...
متن کاملFabrication and Evaluation of Functionalized Nano-titanium Dioxide (F-NanoTiO2)/ polysulfone (PSf) Nanocomposite Membranes for Gas Separation
متن کامل
Playing with ionic liquid mixtures to design engineered CO2 separation membranes.
Ionic liquids have been explored as attractive alternative media for CO2 separation not only due to their low volatility but also due to their highly tuneable nature. Aiming at designing highly efficient liquid phases for flue gas separation and natural gas purification, this work focuses on the use of binary ionic liquid mixtures containing sulfate and/or cyano-functionalized anions. Several m...
متن کاملTheoretical screening of zeolites for membrane separation of propylene/propane mixtures
In this paper, the performances of potential zeolite membranes were estimated by the Maxwell-Stefan model and then they were placed in Robeson plot of propylene/propane separation. Additionally, the effects of feed pressure and the mole fraction of propylene in the feed on both the propylene permeabilities and membrane permselectivities were investigated. The results showed that zeolite membran...
متن کامل