Decay rates for solutions of a system of wave equations with memory ∗ Mauro
نویسنده
چکیده
The purpose of this article is to study the asymptotic behavior of the solutions to a coupled system of wave equations having integral convolutions as memory terms. We prove that when the kernels of the convolutions decay exponentially, the first and second order energy of the solutions decay exponentially. Also we show that when the kernels decay polynomially, these energies decay polynomially.
منابع مشابه
Asymptotic behavior of solutions to wave equations with a memory condition at the boundary ∗
In this paper, we study the stability of solutions for wave equations whose boundary condition includes a integral that represents the memory effect. We show that the dissipation is strong enough to produce exponential decay of the solution, provided the relaxation function also decays exponentially. When the relaxation function decays polynomially, we show that the solution decays polynomially...
متن کاملSolitary Wave solutions of the BK equation and ALWW system by using the first integral method
Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملUniform Decay Rates of Solutions to a Nonlinear Wave Equation with Boundary Condition of Memory Type
In this article we study the hyperbolic problem (1) where R is a bounded region in Rn whose boundary is partitioned into disjoint sets ro, rl. We prove that the dissipation given by the memory term is strong enough to assure exponential (or polynomial) decay provided the relaxation function also decays exponentially (or polynomially). In both cases the solution decays with the same rate of the ...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کامل