Decompositions of trigonometric polynomials with applications to multivariate subdivision schemes
نویسندگان
چکیده
We study multivariate trigonometric polynomials satisfying the “sum-rule” conditions of a certain order. Based on the polyphase representation of these polynomials relative to a general dilation matrix, we develop a simple constructive method for a special type of decomposition of such polynomials. These decompositions are of interest in the analysis of convergence and smoothness of multivariate subdivision schemes associated with general dilation matrices. The approach presented in this paper leads directly to constructive algorithms, and is an alternative to the analysis of multivariate subdivision schemes in terms of the joint spectral radius of certain operators. Our convergence results apply to arbitrary dilation matrices, while the smoothness results are limited to two classes of dilation matrices.
منابع مشابه
Ju l 2 00 9 Decompositions of Trigonometric Polynomials with Applications to Multivariate Subdivision Schemes
We study multivariate trigonometric polynomials, satisfying a set of constraints close to the known Strung-Fix conditions. Based on the polyphase representation of these polynomials relative to a general dilation matrix, we develop a simple constructive method for a special type of decomposition of such polynomials. These decompositions are of interest to the analysis of convergence and smoothn...
متن کاملA New Class of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials
We present a new class of non-stationary, interpolatory subdivision schemes that can exactly reconstruct parametric surfaces including exponential polynomials. The subdivision rules in our scheme are interpolatory and are obtained using the property of reproducing exponential polynomials which constitute a shift-invariant space. It enables our scheme to exactly reproduce rotational features in ...
متن کاملTernary approximating non - stationary subdivision schemes for curve design
In this paper, an algorithm has been introduced to produce ternary 2m-point (for any integer m≥ 1) approximating non-stationary subdivision schemes which can generate the linear spaces spanned by {1; cos(α.); sin(α.)}. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the schemes. The proposed algorithm can be consider as the non-stationary counter ...
متن کاملMultiple Rank-1 Lattices as Sampling Schemes for Multivariate Trigonometric Polynomials
We present a new sampling method that allows the unique reconstruction of (sparse) multivariate trigonometric polynomials. The crucial idea is to use several rank-1 lattices as spatial discretization in order to overcome limitations of a single rank-1 lattice sampling method. The structure of the corresponding sampling scheme allows for the fast computation of the evaluation and the reconstruct...
متن کاملOn polynomial symbols for subdivision schemes
Given a dilation matrix A : Z d → Z d , and G a complete set of coset representatives of 2π(A −− Z d /Z d), we consider polynomial solutions M to the equation g∈G M (ξ + g) = 1 with the constraints that M ≥ 0 and M (0) = 1. We prove that the full class of such functions can be generated using polynomial convolution kernels. Trigonometric polynomials of this type play an important role as symbol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 38 شماره
صفحات -
تاریخ انتشار 2013