Stability of Runge–Kutta–Nyström methods
نویسندگان
چکیده
In this paper, a general and detailed study of linear stability of Runge–Kutta–Nyström (RKN) methods is given. In the case that arbitrarily stiff problems are integrated, we establish a condition that RKN methods must satisfy so that a uniform bound for stability can be achieved. This condition is not satisfied by any method in the literature. Therefore, a stable method is constructed and some numerical comparisons are made. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs
A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...
متن کاملAn Embedded 4(3) Pair of Explicit Trigonometrically-Fitted Runge-Kutta-Nyström Method for Solving Periodic Initial Value Problems
متن کامل
Symplectic Runge-Kutta-Nyström Methods with Phase-Lag Oder 8 and Infinity
In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stages and fourth order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation of the eigenval...
متن کاملExponentially Fitted Symplectic Runge-Kutta-Nyström methods
In this work we consider symplectic Runge Kutta Nyström (SRKN) methods with three stages. We construct a fourth order SRKN with constant coefficients and a trigonometrically fitted SRKN method. We apply the new methods on the two-dimentional harmonic oscillator, the Stiefel-Bettis problem and on the computation of the eigenvalues of the Schrödinger equation.
متن کاملA Zero-Dissipative Runge-Kutta-Nyström Method with Minimal Phase-Lag
An explicit Runge-Kutta-Nyström method is developed for solving second-order differential equations of the form q′′ f t, q where the solutions are oscillatory. The method has zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show the preciseness and effectiveness of the meth...
متن کامل