Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation
نویسندگان
چکیده
Bioluminescent bacterial sensors are based upon the fusion of bacterial bioluminescence (lux) genes, acting as a reporter element, to selected bacterial stress-response gene promoters. Depending upon the nature of the promoter, the resulting constructs react to diverse types of environmental stress, including the presence of toxic chemicals, by dose-dependant light emission. Two bacterial sensors, harbouring sulA::luxCDABE and grpE::luxCDABE fusions, activated by the model chemicals nalidixic acid (NA) and ethanol, respectively, were subjected to molecular manipulations of the promoter region, in order to enhance the intensity and speed of their response and lower their detection thresholds. By manipulating the length of the promoter-containing segment (both promoters), by introducing random or specific mutations in the promoter sequence or by duplicating the promoter sequence (sulA only), major improvements in sensor performance were obtained. Improvements included significantly enhanced sensitivity, earlier response times and an increase in signal intensity. The general approaches described herein may be of general applicability for optimizing bacterial sensor performance, regardless of the sensing or reporting elements employed.
منابع مشابه
Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene...
متن کاملGenetic polymorphisms in the promoter region of catalase gene, creates new potential PAX-6 and STAT4 response elements
Catalase (CAT, OMIM: 115500) is an endogenous antioxidant enzyme and genetic variations in the regulatory regions of the CAT gene may alter the CAT enzyme activity and subsequently may alter the risk of oxidative stress related disease. In this study, potential influence(s) of the A-21T (rs7943316) and C-262T (rs1001179) genetic polymorphisms in the CAT promoter region, using the ALGGEN-PROMO.v...
متن کاملReconstructing promoter activity from Lux bioluminescent reporters
The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent dat...
متن کاملAn alternative bacterial expression system using Bacillus pumilus SG2 chitinase promoter
Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus spe...
متن کاملVisualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon.
Animal studies with Streptococcus pneumoniae have provided valuable models for drug development. In order to monitor long-term pneumococcal infections noninvasively in living mice, a novel gram-positive lux transposon cassette, Tn4001 luxABCDE Km(r), that allows random integration of lux genes onto the bacterial chromosome was constructed. The cassette was designed so that the luxABCDE and kana...
متن کامل