Ultra-high Speed Monte Carlo Computing Techniques Using Field Programmable Gate Arrays

نویسندگان

  • Alexander S. Pasciak
  • John R. Ford
  • A. S. Pasciak
  • J. R. Ford
چکیده

Advancements in parallel and cluster computing have made many complex Monte Carlo simulations possible in the past several years. Unfortunately, cluster computers are large, expensive, and still not fast enough to make Monte Carlo useful for calculations requiring a near real time evaluation period. For Monte Carlo simulations, a small computational unit called a Field Programmable Gate Array (FPGA) is capable of bringing the power of a large cluster computer into any desktop PC. Because an FPGA is capable of executing Monte Carlo simulations with a high degree of parallelism, a simulation run on a large FPGA can be executed at a much higher rate than an equivalent simulation on a modern single processor desktop PC. In this paper we discuss a simple radiation transport problem involving moderate energy photons incident on a 3 dimensional target. By comparing the evaluation speed of this transport problem on an FPGA to the evaluation speed of the same transport problem using standard computing techniques, we show that it is possible to accelerate Monte Carlo computations significantly using field programmable gate arrays. In fact, we have found that our simple photon transport test case can be evaluated about 650 times faster on a large FPGA than it can on a 3.2 Ghz Pentium-4 desktop PC running MCNP5—an acceleration factor that we predict will be largely preserved for many Monte Carlo simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardware acceleration of a Quantum Monte Carlo application

We are currently exploring the use of reconfigurable computing using Field Programmable Gate Arrays (FPGAs) to accelerate kernels of scientific applications. Here, we present a hardware architecture targeted towards the acceleration of two scientific kernels in a Quantum Monte Carlo (QMC) application applied to N-body systems. Quantum Monte Carlo methods enable us to determine the ground-state ...

متن کامل

Architectural Comparisons for a Quantum Monte Carlo Application

Recent technological advances have led to a number of emerging platforms such as multi-cores, reconfigurable computing, and graphics processing units. We present a comparative study of multi-cores, field-programmable gate arrays, and graphics processing units for a Quantum Monte Carlo chemistry application. The speedups of these implementations are measured relative to a multi-core implementati...

متن کامل

The Theoretical Development of a New High Speed Solution for Monte Carlo Radiation Transport Computations

The Theoretical Development of a New High Speed Solution for Monte Carlo Radiation Transport Computations. (December 2005) Alexander Samuel Pasciak, B.S., University of Washington Chair of Advisory Committee: Dr. John R. Ford Advancements in parallel and cluster computing have made many complex Monte Carlo simulations possible in the past several years. Unfortunately, cluster computers are larg...

متن کامل

Design and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)

In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...

متن کامل

3D Lattice Monte Carlo Simulations on FPGAs

Field Programmable Gate Arrays (FPGAs) offer significant performance advantages over general purpose compute architectures for certain scientific problems, including lattice-based Monte Carlo simulations of complex systems models. We report on a custom logic design for the 3D-lattice Ising model that keeps the entire system state in on-chip memory to achieve very high throughput rates. The pipe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005