The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys.
نویسندگان
چکیده
Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT∼ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ∼25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ∼2.04 W m(-1) K(-1) at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed.
منابع مشابه
Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries.
P-Type polycrystalline silicon-germanium (SiGe) thin films are grown by low-pressure chemical vapor deposition (LPCVD) and their thermoelectric properties are characterized from 120 K to 300 K for potential application in integrated microscale cooling. The naturally formed grain boundaries are found to play a crucial role in determining both the charge and thermal transport properties of the fi...
متن کاملEngineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale
Thermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a lo...
متن کاملHeavy Element Doping for Enhancing Thermoelectric Properties of Nanostructured Zinc Oxide
ZnO is a high melting point high charge carrier mobility semiconductor with potential as a thermoelectric material, but its high thermal conductivity is the limiting factor for increasing the thermoelectric figure of merit ZT. Here, we demonstrate that doping ZnO with heavy elements can significantly enhance ZT. Indium doping leads to ultralow κ~3 Wm-1K-1 and a high power factor α2σ~1.230×10-3 ...
متن کاملThermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure
Bi2Te3 is a good thermoelectric compound that can be adjusted to por n-type with corresponding substitutions; however, less progress has been achieved for the property enhancement of n-type Bi2(TeSe)3 compared with p-type (BiSb)2Te3. Textured n-type Bi2(TeSe)3 with an enhanced thermoelectric performance has been developed in this study by combining texturing with in situ nanostructuring effects...
متن کاملEXPERIMENTAL EVIDENCE OF IMPROVED THERMOELECTRIC PROPERTIES AT 300K IN Si/Ge SUPERLATTICE STRUCTURES
We have found that it may be possible to obtain significant enhancement in ZT at 300K, over conventional bulk SiGe alloys, through the use of Si/Ge Superlattice (SL) structures. The Seebeck coefficient in Si/Ge SL structures was observed to increase rapidly with decreasing SL period with no loss of electrical conductivity. The carrier mobilities in Si/Ge SLs were higher than in a comparable thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 29 شماره
صفحات -
تاریخ انتشار 2015