A lithium-ion sulfur battery using a polymer, polysulfide-added membrane

نویسندگان

  • Marco Agostini
  • Jusef Hassoun
چکیده

In this paper we report the performances of a lithium-ion sulfur battery characterized by a polymer configuration. The cell, based on a sulfur-carbon cathode, a Li-Sn-C nanostructured anode and a PEO-based, polysulfide-added electrolyte, shows very good electrochemical performances in terms of stability and delivered capacity. The remarkable cell performances are ascribed to the mitigation of the cathode dissolution process due to the buffer action ensured by the polysulfide added to the polymer electrolyte. This electrolyte configuration allows the achievement of a stable capacity ranging from 500 to 1500 mAh gS(-1), depending on the cycling rate. The use of a polymer electrolyte and the replacement of the lithium metal with a Li-Sn-C nanostructured alloy are expected to guarantee high safety content, thus suggesting the battery here studied as advanced energy storage system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer ele...

متن کامل

Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries

As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize ...

متن کامل

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage†

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on ...

متن کامل

A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. Th...

متن کامل

A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm(-1) at room temperature. The cycling performance of Li-S batter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015