Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types

نویسندگان

  • Haidan Yan
  • Dongwei Zhang
  • Hongbo Liu
  • Yanjun Wei
  • Jie Lv
  • Fang Wang
  • Chunlong Zhang
  • Qiong Wu
  • Jianzhong Su
  • Yan Zhang
چکیده

DNA methylation is related closely to sequence contexts and chromatin modifications; however, their potential differences in different genomic regions across cell types remain largely unexplored. We used publicly available genome-scale DNA methylation and histone modification profiles to study their relationships among different genomic regions in human embryonic stem cells (H1), H1-derived neuronal progenitor cultured cells (NPC), and foetal fibroblasts (IMR90) using the Random forests classifier. Histone modifications achieved high accuracy in modelling DNA methylation patterns on a genome scale in the three cell types. The inclusion of sequence features helped improve accuracy only in non-promoter regions of IMR90. Furthermore, the top six feature combinations obtained by mean decrease Gini were important indicators of different DNA methylation patterns, suggesting that H3K4me2 and H3K4me3 are important indicators that are independent of genomic regions and cell types. H3K9me3 was IMR90-specific and exhibited a genomic region-specific correlation with DNA methylation. Variations of essential chromatin modification signals may effectively discriminate changes of DNA methylation between H1 and IMR90. Genes with different co-variations of epigenetic marks exhibited genomic region-specific biological relevance. This study provides an integrated strategy to identify systematically essential epigenetic and genetic elements of genomic region-specific and cell type-specific DNA methylation patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-5: Reprogramming of Paternal DNA Methylome during Spermiogenesis

Background Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs in the zygote. This process involves reorganisation of the patterns of 5-methylcytosine (5mC), a DNA modification associated with regulation of gene activity. Notably, both maternal and paternal genomes undergo Tet3-dependent oxidati...

متن کامل

Patterns of Chromatin-Modifications Discriminate Different Genomic Features in Arabidopsis

Dynamic regulation and packaging of genetic information is achieved by the organization of DNA into chromatin. Nucleosomal core histones, which form the basic repeating unit of chromatin, are subject to various post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitinylation. These modifications have effects on chromatin structure and, along with DNA meth...

متن کامل

DNA methylation of tumor suppressor genes in hepatocellular carcinoma

The basic unit of chromatin is a nucleosome included an octamer of the four core histones and 147 base pairs of DNA. Posttranslational histones modifications affect chromatin structure resulting in gene expression changes. CpG islands hypermethylation within the gene promoter regions and the deacetylation of histone proteins are the most common epigenetic modifications. The aberrant patterns of...

متن کامل

Epigenetic Modifications of Host Genes Induced by Bacterial Infection

Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...

متن کامل

An Overview of the Epigenetic Modifications of Gene Expression in Tumorigenesis

The five leading causes of cancer-related deaths are lung (1,760,000 deaths), colorectal (862,000 deaths), stomach (783,000 deaths), liver (782,000 deaths), and breast (627,000 deaths) cancers. Epigenetic changes can alter chromatin compaction, leading to the regulation of geneexpression without changing the primary DNA sequence.Epigenetic mechanisms are normally involved incellular processes s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015