Plasmonic Metamaterials and Nanocomposites with the Narrow Transparency Window Effect in Broad Extinction Spectra
نویسندگان
چکیده
We propose and describe plasmonic nanomaterials with unique optical properties. These nanostructured materials strongly attenuate light across a broad wavelength interval ranged from 400 nm to 5 μm but exhibit a narrow transparency window centered at a given wavelength. The main elements used in our systems are nanorods and nanocrosses of variable sizes. The nanomaterial can be designed as a solution, nanocomposite film or metastructure. The principle of the formation of the transparency window in the broad extinction spectrum is based on the narrow lines of longitudinal plasmons of single nanorods and nanorod complexes. To realize the spectrum with a transmission window, we design a nanocomposite material as a mixture of nanorods of different sizes. Simultaneously, we exclude nanorods of certain lengths from the nanorod ensemble. The width of the plasmonic transparency window is determined by the intrinsic and radiative broadenings of the nanocrystal plasmons. Nanocrystals can be randomly dispersed in a solution or arranged in metastructures. We show that interactions between nanocrystals in a dense ensemble can destroy the window effect and, simultaneously, we design the metastructure geometries with weak destructive interactions. We also describe the effect of narrowing of the transparency window with increasing the concentration of nanocrystals. Two well-established technologies can be used to fabricate such nanoand metamaterials, the colloidal synthesis, and lithography. Nanocomposites proposed here can be used as optical materials and smart coatings for shielding of electromagnetic radiation in a wide spectral interval with a simultaneous possibility of communication using a narrow transparency window.
منابع مشابه
Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, wh...
متن کاملInvestigation of extinction spectra of THTS Mn thin films and comparsion with discrete dipole approximation simulation results
In this work, the extinction spectra of the nano-structure of the Tilt Helical and Stair-like Towers of Mn thin films were obtained using discrete dipole approximation (DDA) simulation for both s-and p-polarization at two incident light angles of 10°, and 60° at different azimuthal angles for the there samples with different tilt. Obtained results are compared with the experimental optical exti...
متن کاملBroadband plasmon induced transparency in terahertz metamaterials.
Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its application...
متن کاملMagnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers
Electromagnetically induced transparency is a type of quantum interference that induces near-zero reflection and near-perfect transmission. As a classical analogy, metal nanostructure plasmonic 'molecules' produce plasmon-induced transparency conventionally. Herein, an electromagnetically induced transparency interaction is demonstrated in silicon nanosphere oligomers, wherein the strong magnet...
متن کاملThe Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials
Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...
متن کامل