Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.

نویسندگان

  • Shu-Wei Chang
  • Arun K Nair
  • Markus J Buehler
چکیده

Graphene has excellent mechanical, electrical and thermal properties. Recently, graphene-metal composites have been proposed as a means to combine the properties of metals with those of graphene, leading to mechanically, electrically and thermally functional materials. The understanding of metal-graphene nanocomposites is of critical importance in developing next-generation electrical, thermal and energy devices, but we currently lack a fundamental understanding of how their geometry and composition control their thermal properties. Here we report a series of atomistic simulations, aimed at assessing the geometry and temperature effects of the thermal interface conductance for copper- and nickel-graphene nanocomposites. We find that copper-graphene and nickel-graphene nanocomposites have similar thermal interface conductances, but that both cases show a strong performance dependence on the number of graphene layers between metal phases. Single-graphene-layer nanocomposites have the highest thermal interface conductance, approaching ~500 MW m(-2) K(-1). The thermal interface conductance reduces to half this value in metal-bilayer graphene nanocomposites, and for more than three layers of graphene the thermal interface conductances further reduces to ~100 MW m(-2) K(-1) and becomes independent with respect to the number of layers of graphene. This dependence is attributed to the relatively stronger bonding between the metal and graphene layer, and relatively weaker bonding between graphene layers. Our results suggest that designs combining metal with single graphene layers provide the best thermal properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalization effect on the thermal conductivity of graphene- polymer nanocomposites

(2014) Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflec...

متن کامل

Interface structure and mechanics between graphene and metal substrates: a first-principles study.

Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of criti...

متن کامل

Electrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media

In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly electrosynthesized nanocomposites: platinum and its alloys (copper and nickel) anoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE electrocatalysts). The electrosynthesized nanocomposites were characterized by scan...

متن کامل

Modeling and Optimization of Mechanical Properties of PA6/NBR/Graphene Nanocomposite Using Central Composite Design

Thermoplastic elastomer of PA6/NBR reinforced by various nanoparticles have wide application in many industries. The properties of these materials depend on PA6, NBR, and nanoparticle amount and characteristics. In this study, the simultaneous effect of NBR and graphene nanoparticle content on mechanical, thermal properties, and morphology of PA6/NBR/Graphene nanocomposites investigated by Cent...

متن کامل

The Preparation, structural characterization, optical properties, and antibacterial activity of the CuO/Cu2O nanocomposites prepared by the facile thermal decomposition of a new copper precursor

Objective(s): In this study, a new copper precursor was prepared from the combination of Cu(CH3COO)2∙H2O (1 g in 5 ml of methanol) and benzoic acid (1 g in 5 ml of methanol) at room temperature. Following that, the copper precursor was calcined at the temperature of 500ºC and 600ºC for 1.5 hours to form CuO/Cu2O nanocomposites with the code numbers of CuO-1 and CuO-2, respectively. Materi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 24 24  شماره 

صفحات  -

تاریخ انتشار 2012