Exact recovery of Dirac ensembles from the projection onto spaces of spherical harmonics
نویسندگان
چکیده
In this work we consider the problem of recovering an ensemble of Diracs on the sphere from its projection onto spaces of spherical harmonics. We show that under an appropriate separation condition on the unknown locations of the Diracs, the ensemble can be recovered through Total Variation norm minimization. The proof of the uniqueness of the solution uses the method of ‘dual’ interpolating polynomials and is based on [8], where the theory was developed for trigonometric polynomials. We also show that in the special case of non-negative ensembles, a sparsity condition is sufficient for exact recovery.
منابع مشابه
Some Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کاملExact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials
In this work we consider the problem of recovering non-uniform splines from their projection onto spaces of algebraic polynomials. We show that under a certain Chebyshev-type separation condition on its knots, a spline whose inner-products with a polynomial basis and boundary conditions are known, can be recovered using Total Variation norm minimization. The proof of the uniqueness of the solut...
متن کاملFast Spin ±2 Spherical Harmonics Transforms
An exact fast algorithm is developed for the direct spin-weighted spherical harmonics transforms of bandlimited spin ±2 functions on the sphere. First, we define spin functions on the sphere and their decomposition in an orthonormal basis of spin-weighted spherical harmonics. Second, we discuss the a priori O(L4) asymptotic complexity of the spin ±2 spherical harmonics transforms, where 2L stan...
متن کاملSpherical harmonic polynomials for higher bundles
We give a method of decomposing bundle-valued polynomials compatible with the action of the Lie group Spin(n), where important tools are Spin(n)-equivariant operators and their spectral decompositions. In particular, the top irreducible component is realized as an intersection of kernels of these operators. 0 Introduction Spherical harmonic polynomials or spherical harmonics are polynomial solu...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.3284 شماره
صفحات -
تاریخ انتشار 2014