The fission yeast Schizosaccharomyces pombe has two importin-alpha proteins, Imp1p and Cut15p, which have common and unique functions in nucleocytoplasmic transport and cell cycle progression.

نویسندگان

  • Makoto Umeda
  • Shahed Izaddoost
  • Ian Cushman
  • Mary Shannon Moore
  • Shelley Sazer
چکیده

The nuclear import of classical nuclear localization signal-containing proteins depends on importin-alpha transport receptors. In budding yeast there is a single importin-alpha gene and in higher eukaryotes there are multiple importin-alpha-like genes, but in fission yeast there are two: the previously characterized cut15 and the more recently identified imp1. Like other importin-alpha family members, Imp1p supports nuclear protein import in vitro. In contrast to cut15, imp1 is not essential for viability, but imp1delta mutant cells exhibit a telophase delay and mild temperature-sensitive lethality. Differences in the cellular functions that depend on Imp1p and Cut15p indicate that they each have unique physiological roles. They also have common roles because the imp1delta and the cut15-85 temperature-sensitive mutations are synthetically lethal; overexpression of cut15 partially suppresses the temperature sensitivity, but not the mitotic delay in imp1delta cells; and overexpression of imp1 partially suppresses the mitotic defect in cut15-85 cells but not the loss of viability. Both Imp1p and Cut15p are required for the efficient nuclear import of both an SV40 nuclear localization signal-containing reporter protein and the Pap1p component of the stress response MAP kinase pathway. Imp1p and Cut15p are essential for efficient nuclear protein import in S. pombe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Compartmentalization Is Abolished during Fission Yeast Meiosis

In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abo...

متن کامل

A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation.

We propose a stochastic version of a recently published, deterministic model of the molecular mechanism regulating the mitotic cell cycle of fission yeast, Schizosaccharomyces pombe. Stochasticity is introduced in two ways: (i) by considering the known asymmetry of cell division, which produces daughter cells of slightly different sizes; and (ii) by assuming that the nuclear volumes of the two ...

متن کامل

Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), R...

متن کامل

The prp1+ gene required for pre-mRNA splicing in Schizosaccharomyces pombe encodes a protein that contains TPR motifs and is similar to Prp6p of budding yeast.

The prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe have a defect in pre-mRNA splicing and accumulate mRNA precursors at a restrictive temperature. One of the prp mutants, prp1-4, also has a defect in poly(A)+ RNA transport. The prp1+ gene encodes a protein of 906 amino acid residues that contains 19 repeats of 34 amino acids termed tetratrico peptide repeat (TP...

متن کامل

GENETICS | PRIMER An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System

The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 171 1  شماره 

صفحات  -

تاریخ انتشار 2005