Automatic Power Quality Disturbance Classification Using Wavelet, Support Vector Machine and Artificial Neural Network

ثبت نشده
چکیده

Abstract— This paper considers two important classification algorithms for to classify several power quality disturbances. Artificial Neural Network (ANN) and support vector machine (SVM). The last one is a novel algorithm that has shown good performance in general patterns classification. Nevertheless, Multilayer Perceptron Artificial Neural Network (MLPANN) is the most popular and most widely used models in various applications. Both are used for classify some disturbances under survey as: low frequency disturbances (such as flicker and harmonics) and high frequency disturbances (such as transient and sags). Biorthogonal Wavelet Function is used as a base function for extract features of PQ disturbances. In addition, RMS value is used to characterize the magnitude of disturbances. This paper considers two important classification algorithms for to classify several power quality disturbances. Artificial Neural Network (ANN) and support vector machine (SVM). The last one is a novel algorithm that has shown good performance in general patterns classification. Nevertheless, Multilayer Perceptron Artificial Neural Network (MLPANN) is the most popular and most widely used models in various applications. Both are used for classify some disturbances under survey as: low frequency disturbances (such as flicker and harmonics) and high frequency disturbances (such as transient and sags). Biorthogonal Wavelet Function is used as a base function for extract features of PQ disturbances. In addition, RMS value is used to characterize the magnitude of disturbances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Intelligence Techniques Applications for Power Disturbances Classification

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction o...

متن کامل

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Detection and Classification of Power Quality Disturbances Using Wavelet Transforms and Probablistic Neural Networks Aneeta

The use of sensitive electronic equipments is on the rise lately and power quality studies have progressed a lot. Detection and classification of power quality signals is of greater importance both in case of Power quality studies and denoising. This paper proposes a detection and classification technique for several power quality disturbances, by introspecting the energy of the distorted signa...

متن کامل

Epilepsy Seizure Detection Using Wavelet Support Vector Machine Classifier

Epilepsy is a perilous neurological disease covering about 4-5% of total population of the world. Its main characteristics are seizures which occur due to certain disturbance in brain function. During epileptic seizures the patient is unaware of their physical as well as mental condition and hence physical injury may occur. Proper health care must be provided to the patients and this can be ach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009