The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation

نویسندگان

  • Christina B. Wölwer
  • Nathan Gödde
  • Luke B. Pase
  • Imogen A. Elsum
  • Krystle Y. B. Lim
  • Faruk Sacirbegovic
  • Carl R. Walkley
  • Sarah Ellis
  • Shigeo Ohno
  • Fumio Matsuzaki
  • Sarah M. Russell
  • Patrick O. Humbert
چکیده

Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gαi/LGN/NuMA pathways.

Asymmetric cell division requires the establishment of cortical cell polarity and the orientation of the mitotic spindle along the axis of cell polarity. Evidence from invertebrates demonstrates that the Par3/Par6/aPKC and NuMA/LGN/Gαi complexes, which are thought to be physically linked by the adaptor protein mInscuteable (mInsc), play indispensable roles in this process. However, the molecula...

متن کامل

Inscuteable and NuMA proteins bind competitively to Leu-Gly-Asn repeat-enriched protein (LGN) during asymmetric cell divisions.

Coupling of spindle orientation to cellular polarity is a prerequisite for epithelial asymmetric cell divisions. The current view posits that the adaptor Inscuteable (Insc) bridges between Par3 and the spindle tethering machinery assembled on NuMALGNGαi(GDP), thus triggering apico-basal spindle orientation. The crystal structure of the Drosophila ortholog of LGN (known as Pins) in complex with ...

متن کامل

Identification of an Aurora-A/Pins/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells

Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this metho...

متن کامل

Identification of an Aurora-A/PinsLINKER/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells

Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this metho...

متن کامل

Par3 Controls Epithelial Spindle Orientation by aPKC-Mediated Phosphorylation of Apical Pins

BACKGROUND Formation of epithelial sheets requires that cell division occurs in the plane of the sheet. During mitosis, spindle poles align so the astral microtubules contact the lateral cortex. Confinement of the mammalian Pins protein to the lateral cortex is essential for this process. Defects in signaling through Cdc42 and atypical protein kinase C (aPKC) also cause spindle misorientation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017