Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes.

نویسندگان

  • K Takahashi
  • N Nakamura
  • T Terada
  • T Okano
  • T Futami
  • H Saito
  • K I Inui
چکیده

Two H+/peptide cotransporters, PEPT1 and PEPT2, are expressed in the kidney, mediating the renal tubular reabsorption of oligopeptides and beta-lactam antibiotics. We examined the interactions of beta-lactam antibiotics with peptide transporters in rat renal brush-border membranes by evaluating the inhibitory potencies of the antibiotics against glycylsarcosine transport. Western blot analysis revealed that PEPT1 and PEPT2 were expressed in the renal brush-border membranes with the apparent molecular masses of 75 and 105 kDa, respectively. Using renal brush-border membrane vesicles, the uphill transport of glycylsarcosine was observed in the presence of an inward H+ gradient and an inside-negative membrane potential. Two transport systems with high affinity (Km of 50 microM) and low affinity (Km of 1.2 mM) appeared kinetically to mediate the glycylsarcosine uptake. The inhibition constants of the antibiotics for glycylsarcosine transport were more closely correlated with those in stable LLC-PK1 cells transfected with rat PEPT2 rather than PEPT1 cDNA. The beta-lactam antibiotics with an alpha-amino group showed trans-stimulation effects on the glycylsarcosine uptake, suggesting that these antibiotics and glycylsarcosine share a common peptide transporter. However, the antibiotics lacking an alpha-amino group failed to show the trans-stimulation effect. It is concluded that amino-beta-lactam antibiotics at therapeutic concentrations interact predominantly with PEPT2 localized in the brush-border membranes of rat kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters.

Parathyroid hormone (PTH) inhibits proximal tubular brush border membrane Na+/Pi cotransport activity; this decrease in the transport activity was found to be associated with a decrease in type II Na+/Pi cotransporter protein content in rat brush border membranes. In the present study we investigated the PTH-dependent regulation of the type II Na+/Pi cotransporter in opossum kidney cells, a pre...

متن کامل

Renal tubular drug transporters.

The kidney plays an important role in the elimination of numerous hydrophilic xenobiotics, including drugs, toxins, and endogenous compounds. It has developed high-capacity transport systems to prevent urinary loss of filtered nutrients, as well as electrolytes, and simultaneously to facilitate tubular secretion of a wide range of organic ions. Transport systems for organic anions and cations a...

متن کامل

Binding of aminocyclitol antibiotics to kidney and intestinal brush border membranes.

Binding of aminocyclitol antibiotics to intestinal and kidney brush border membranes has been studied in vitro by means of vesicular preparations. The binding is rapid, reversible, specific, saturable and has a high affinity. To both tissues, gentamicin and sisomicin bind to a single binding site or receptor. These antibiotics demonstrate increased binding under conditions of increasing pH. Mem...

متن کامل

Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter.

The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identificatio...

متن کامل

beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter.

Therapeutic use of cephaloridine, a beta-lactam antibiotic, in humans is associated with carnitine deficiency. A potential mechanism for the development of carnitine deficiency is competition between cephaloridine and carnitine for the renal reabsorptive process. OCTN2 is an organic cation/carnitine transporter that is responsible for Na(+)-coupled transport of carnitine in the kidney and other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 286 2  شماره 

صفحات  -

تاریخ انتشار 1998