Polynomial Iungs over Jacobsoñ-hilbert Rings
نویسنده
چکیده
CARL FAITH All rings considered are commutative with unit. A ring R is SISI (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective . SISI rings include Noetherian rings, Morita rings, and almost maximal valuation rings ([Vil) . In [F3] we raised the question of whether a polynomial ring R[-1 over a SISI ring R is again SISI . In this paper we show this is not the cace .
منابع مشابه
HILBERT SCHEMES and MAXIMAL BETTI NUMBERS over VERONESE RINGS
We show that Macaulay’s Theorem, Gotzmann’s Persistence Theorem, and Green’s Theorem hold over a Veronese toric ring R. We also prove that the Hilbert scheme over R is connected; this is an analogue of Hartshorne’s theorem that the Hilbert scheme over a polynomial ring is connected. Furthermore, we prove that each lex ideal in R has the greatest Betti numbers among all graded ideals with the sa...
متن کاملGray Images of Constacyclic Codes over some Polynomial Residue Rings
Let be the quotient ring where is the finite field of size and is a positive integer. A Gray map of length over is a special map from to ( . The Gray map is said to be a ( )-Gray map if the image of any -constacyclic code over is a -constacyclic code over the field . In this paper we investigate the existence of ( )-Gray maps over . In this direction, we find an equivalent ...
متن کاملOn Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains
Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...
متن کاملChow Rings of Matroids and Atomistic Lattices
After Feichner and Yuzvinsky introduced the Chow ring associated to ranked atomistic lattices in 2003, little study of them was made before Adiprisito, Huh, and Katz used them to resolve the long-standing Heron-Rota-Walsh conjecture, proving along the way that the Chow rings of geometric lattices satisfy versions of Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann relations. ...
متن کاملGl-equivariant Modules over Polynomial Rings in Infinitely Many Variables
Consider the polynomial ring in countably infinitely many variables over a field of characteristic zero, together with its natural action of the infinite general linear group G. We study the algebraic and homological properties of finitely generated modules over this ring that are equipped with a compatible G-action. We define and prove finiteness properties for analogues of Hilbert series, sys...
متن کامل