A new bound for the data expansion of Huffman codes

نویسندگان

  • Roberto De Prisco
  • Alfredo De Santis
چکیده

It is proven that for every random variable with a countably infinite set of outcomes and finite entropy there exists an optimal prefix code which can be constructed from Huffman codes for truncated versions of the random variable, and that the average lengths of any sequence of Huffman codes for the truncated versions converge to that of the optimal code. Also, it is shown that every optimal infinite code achieves Kraft’s inequality with equality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Data Expansion of the Huffman Compression Algorithm

While compressing a file with a Huffman code, it is possible that the size of the file grows temporarily. This happens when the source letters with low frequencies (to which long codewords are assigned) are encoded first. The maximum data expansion is the average growth in bits per source letter resulting from the encoding of a source letter with a long codeword. It is a measure of the worst ca...

متن کامل

University of Warsaw Faculty of Mathematics , Informatics and Mechanics Marek Biskup

In compressed data a single bit error propagates because of the corruption of the decoder’s state. This work is a study of error resilience in compressed data and, in particular, of the recovery of as much data as possible after a bit error. It is focused on Huffman codes. In a message encoded with a Huffman code a bit error causes the decoder to lose synchronization with the coder. The error p...

متن کامل

The Rényi redundancy of generalized Huffman codes

If optimality is measured by average codeword length, Huffman's algorithm gives optimal codes, and the redundancy can be measured as the difference between the average codeword length and Shannon's entropy. If the objective function is replaced by an exponentially weighted average, then a simple modification of Huffman's algorithm gives optimal codes. The redundancy can now be measured as the d...

متن کامل

A new method for 3-D magnetic data inversion with physical bound

Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...

متن کامل

A simple upper bound on the redundancy of Huffman codes

Upper bounds on the redundancy of Huffman codes have been extensively studied in the literature. Almost all of these bounds are in terms of the probability of either the most likely or the least likely source symbol. In this correspondence, we prove a simple upper bound in terms of the probability of any source symbol.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1997