Trimmed weighted Simes' test for two one-sided hypotheses with arbitrarily correlated test statistics.

نویسندگان

  • Werner Brannath
  • Frank Bretz
  • Willi Maurer
  • Sanat Sarkar
چکیده

The two-sided Simes test is known to control the type I error rate with bivariate normal test statistics. For one-sided hypotheses, control of the type I error rate requires that the correlation between the bivariate normal test statistics is non-negative. In this article, we introduce a trimmed version of the one-sided weighted Simes test for two hypotheses which rejects if (i) the one-sided weighted Simes test rejects and (ii) both p-values are below one minus the respective weighted Bonferroni adjusted level. We show that the trimmed version controls the type I error rate at nominal significance level alpha if (i) the common distribution of test statistics is point symmetric and (ii) the two-sided weighted Simes test at level 2alpha controls the level. These assumptions apply, for instance, to bivariate normal test statistics with arbitrary correlation. In a simulation study, we compare the power of the trimmed weighted Simes test with the power of the weighted Bonferroni test and the untrimmed weighted Simes test. An additional result of this article ensures type I error rate control of the usual weighted Simes test under a weak version of the positive regression dependence condition for the case of two hypotheses. This condition is shown to apply to the two-sided p-values of one- or two-sample t-tests for bivariate normal endpoints with arbitrary correlation and to the corresponding one-sided p-values if the correlation is non-negative. The Simes test for such types of bivariate t-tests has not been considered before. According to our main result, the trimmed version of the weighted Simes test then also applies to the one-sided bivariate t-test with arbitrary correlation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical approaches for multiple comparison procedures using weighted Bonferroni, Simes, or parametric tests

The confirmatory analysis of pre-specified multiple hypotheses has become common in pivotal clinical trials. In the recent past multiple test procedures have been developed that reflect the relative importance of different study objectives, such as fixed sequence, fallback, and gatekeeping procedures. In addition, graphical approaches have been proposed that facilitate the visualization and com...

متن کامل

On generalized Simes critical constants.

We consider the problem treated by Simes of testing the overall null hypothesis formed by the intersection of a set of elementary null hypotheses based on ordered p-values of the associated test statistics. The Simes test uses critical constants that do not need tabulation. Cai and Sarkar gave a method to compute generalized Simes critical constants which improve upon the power of the Simes tes...

متن کامل

Some Generalized Fwer Procedures

In a multiple testing problem where one is willing to tolerate a few false rejections, procedure controlling the familywise error rate (FWER) can potentially be improved in terms of its ability to detect false null hypotheses by generalizing it to control the k-FWER, the probability of falsely rejecting at least k null hypotheses, for some fixed k > 1. Simes’ test for testing the intersection n...

متن کامل

Comparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis

 This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...

متن کامل

Significance analysis of groups of genes in expression profiling studies

MOTIVATION Gene class testing (GCT) is a statistical approach to determine whether some functionally predefined classes of genes express differently under two experimental conditions. GCT computes the P-value of each gene class based on the null distribution and the gene classes are ranked for importance in accordance with their P-values. Currently, two null hypotheses have been considered: the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrical journal. Biometrische Zeitschrift

دوره 51 6  شماره 

صفحات  -

تاریخ انتشار 2009