Restoring physiological cell heterogeneity in the mesenchyme during tooth engineering.
نویسندگان
چکیده
Tooth development is controlled by reciprocal epithelial-mesenchymal interactions. Complete teeth can form when culturing and implanting re-associations between single embryonic dental epithelial and mesenchymal cells. Although epithelial histogenesis is clear, very little is known about cell diversity and patterning in the mesenchyme. The aim of this work was to compare the situation in engineered and developing teeth at similar developmental stages. To this end, the expression of cell surface markers in the mesenchyme was investigated by immunostaining in: 1) embryonic mouse molars at embryonic day 14, as the initial cell source for re-associations, 2) cultured cell re-associations just before their implantation and 3) cultured cell re-associations implanted for two weeks. Surface markers allowed visualization of the complex patterning of different cell types and the differential timing in their appearance. The phenotype of mesenchymal cells rapidly changed when they were grown as a monolayer, even without passage. This might explain the rapid loss of their potential to sustain tooth formation after re-association. Except for markers associated with vascularization, which is not maintained in vitro, the staining pattern in the mesenchyme of cultured re-associations was similar to that observed in situ. After implantation, vascularization and the cellular heterogeneity in the mesenchyme were similar to what was observed in developing molars. Besides tissue oxygenation and its role in mineralization of dental matrices, vascularization is involved in the progressive increase in mesenchymal cell heterogeneity, by allowing external cells to enter the mesenchyme.
منابع مشابه
Tooth Engineering: Searching for Dental Mesenchymal Cells Sources
The implantation of cultured re-associations between embryonic dental mesenchymal cells and epithelial cells from mouse molars at embryonic day 14 (ED14) allowed making full teeth with crown, root, periodontal ligament fibers, and bone. Although representing valuable tools to set up methodologies embryonic cells are not easily available. This work thus aimed to replace the embryonic cells by de...
متن کاملFull Mouth Reconstruction of a Patient with Worn Dentition: A Clinical Report
Abstract The attrition of anterior teeth leads to the loss of efficient anterior guidance, which protects posterior teeth from wear during lateral excursions. This clinical report describes a 48-year-old man with diagonal tooth wear and posterior mandibular tooth loss. The clinical diagnosis was based on a complete oral examination, photos, functional analysis of lateral excursion movements,...
متن کاملDental Epithelial Histomorphogenesis in vitro.
Recent developments in tooth-tissue engineering require that we understand the regulatory processes to be preserved to achieve histomorphogenesis and cell differentiation, especially for enamel tissue engineering. Using mouse first lower molars, our objectives were: (1) to determine whether the cap-stage dental mesenchyme can control dental epithelial histogenesis, (2) to test the role of the p...
متن کاملTooth Organ Bioengineering: Cell Sources and Innovative Approaches
Various treatment approaches for restoring missing teeth are being utilized nowadays by using artificial dental crowns/bridges or the use of dental implants. All aforementioned restorative modalities are considered to be the conventional way of treating such cases. Although these artificial therapies are commonly used for tooth loss rehabilitation, they are still less conservative, show less bi...
متن کاملPhysiological and Morphological Changes of Recombinant E. coli During Over-Expression of Human Interferon-g in HCDC
The objective of this research was to investigate the influence of the over-expression of recombinant interferon-g during high cell density cultivation on cellular characteristics of recombinant E. coli. Batch and fed-batch culture techniques were employed to grow Escherichia coli BL21 for production of human gamma-interferon in pET expression system. Final cell densities in batch and fed-batch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 56 9 شماره
صفحات -
تاریخ انتشار 2012