Modification and stability of aromatic self-assembled monolayers upon irradiation with energetic particles.

نویسندگان

  • P Cyganik
  • E Vandeweert
  • Z Postawa
  • J Bastiaansen
  • F Vervaecke
  • P Lievens
  • R E Silverans
  • N Winograd
چکیده

We have studied ion and electron irradiation of self-assembled monolayers (SAMs) of 2-(4'-methyl-biphenyl-4yl)-ethanethiol (BP2, CH3-C6H4C6H4CH2CH2-SH), phenyl mercaptan (PEM, C6H5CH2CH2-SH), and 4'-methyl-biphenyl-4-thiol (BP0, CH3-C6H4C6H4-SH) deposited on Au(111) substrates. Desorption of neutral particles from PEM/Au and BP2/Au was investigated using laser ionization in combination with mass spectrometry. The ion-induced damage of both BP2 and PEM SAMs is very efficient and interaction with a single ion leads to the modification of tens of molecules. This feature is the result of a desorption process caused by a chemical reaction initiated by an ion impact. Both for ions and electrons, experiments indicate that the possibility for scission of the Au-S bond strongly depends on the chemical nature of the SAM system. We attribute the possible origin of this effect to the orientation of the Au-S-C angle or adsorption sites of molecules. The analysis of electron-irradiated PEM/Au and BP2/Au, using ion-initiated laser probing, enabled measurements of the cross section for the electron-induced damage of the intact molecule or specific fragment. Analysis of electron-irradiated BP0/Au by using time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides direct evidence for the quasi-polymerization process induced by electron irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling gold nanoparticle assembly on electron beam-reduced nitrophenyl self-assembled monolayers via electron dose

Electron Beam Lithography is a well-established tool suitable for the modification of substrate surface chemistry. It therefore follows that the deposition and self-assembly of nanoparticles on a surface can be directed using this method. This work explores the effect of electron dose on the electron beam lithographic patterning of selfassembled monolayers (SAMs) on gold surfaces. Electron beam...

متن کامل

Photolithographic Technique for Direct Photochemical Modification and Chemical Micropatterning of Surfaces

We describe a photolithographic method for the direct modification and micropatterning of the surface chemical structure of self-assembled monolayers. End-functional azobenzene alkanethiols are designed and synthesized so that, when self-assembled onto gold substrates, an acid-sensitive tert-butyl ester end group is positioned at the air-monolayer interface. Upon exposure to UV radiation in the...

متن کامل

Lateral heterostructures of two-dimensional materials by electron-beam induced stitching

We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were grown by chemical vapor deposition (CVD) on copper and SiO2 substrates, respectively, transferred onto gold/mica substrates and patterned by elect...

متن کامل

Study of the packing density and molecular orientation of bimolecular self-assembled monolayers of aromatic and aliphatic organosilanes on silica.

Bimolecular self-assembled monolayers (SAMs) of aromatic and aliphatic chlorosilanes were self-assembled onto silica, and their characteristics were established by contact angle measurement, near-edge X-ray absorption fine structure spectroscopy, and Fourier transform infrared spectroscopy. Three aromatic constituents (phenyltrichlorosilane, benzyltrichlorosilane, and phenethyltrichlorosilane) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 11  شماره 

صفحات  -

تاریخ انتشار 2005