A double bounded key identity for Göllnitz’s (BIG) partition theorem

نویسنده

  • Alexander Berkovich
چکیده

Given integers i, j, k, L,M , we establish a new double bounded q−series identity from which the three parameter (i, j, k) key identity of Alladi-Andrews-Gordon for Göllnitz’s (big) theorem follows if L,M → ∞. When L = M , the identity yields a strong refinement of Göllnitz’s theorem with a bound on the parts given by L. This is the first time a bounded version of Göllnitz’s (big) theorem has been proved. This leads to new bounded versions of Jacobi’s triple product identity for theta functions and other fundamental identities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dual of Göllnitz’s (big) Partition Theorem*

A Rogers-Ramanujan (R-R) type identity is a q-hypergeometric identity in the form of an infinite (possibly multiple) series equals an infinite product. The series is the generating function of partitions whose parts satisfy certain difference conditions, whereas the product is the generating function of partitions whose parts usually satisfy certain congruence conditions. For a discussion of a ...

متن کامل

A four parameter generalization of Göllnitz's (big) partition theorem

We announce a new four parameter partition theorem from which the (big) theorem of Göllnitz follows by setting any one of the parameters equal to 0. This settles a problem of Andrews who asked whether there exists a result that goes beyond the partition theorem of Göllnitz. We state a four parameter q-series identity (key identity) which is the generating function form of this theorem. In a sub...

متن کامل

A Combinatorial Correspondence Related to Göllnitz’ (big) Partition Theorem and Applications

In recent work, Alladi, Andrews and Gordon discovered a key identity which captures several fundamental theorems in partition theory. In this paper we construct a combinatorial bijection which explains this key identity. This immediately leads to a better understanding of a deep theorem of Göllnitz, as well as Jacobi’s triple product identity and Schur’s partition theorem.

متن کامل

New Polynomial Analogues of Jacobi’s Triple Product and Lebesgue’s Identities

In a recent paper by the authors, a bounded version of Göllnitz's (big) partition theorem was established. Here we show among other things how this theorem leads to nontrivial new polynomial analogues of certain fundamental identities of Jacobi and Lebesgue. We also derive a two parameter extension of Jacobi's famous triple product identity.

متن کامل

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000