Super-strong materials for temperatures exceeding 2000 °C
نویسندگان
چکیده
Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.
منابع مشابه
The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method
In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...
متن کاملThe effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method
In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...
متن کاملDecay of quantized vorticity in super#uid 4He at mK temperatures
An experimental investigation of the free decay of quantized turbulence in isotopically pure super#uid 4He at mK temperatures is discussed. Vortices are created by a vibrating grid, and detected by their trapping of negative ions. Preliminary results suggest the existence of a temperature-independent vortex decay mechanism below 1&70 mK.
متن کاملShape Memory Properties in Cu-Zn-Al Alloy
In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...
متن کاملTemperature-induced pupil movements in insect superposition eyes.
In this paper, we describe the hitherto largely overlooked effect of temperature on the pupil of insect compound eyes. In the turnip moth Agrotis segetum and in two other nocturnal insects with superposition eyes, the lacewing Euroleon nostras and the codling moth Cydia pomonella, the pupil not only opens and closes with changes in the ambient light level, as expected, but also with changes in ...
متن کامل