Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
نویسندگان
چکیده
BACKGROUND Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. RESULTS OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). CONCLUSIONS OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases' ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.
منابع مشابه
Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae
BACKGROUND Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis. We h...
متن کاملProduction of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor
In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...
متن کاملEvaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse
Bioconversion of hemicellulosic hydrolysates into ethanol with the desired yields plays a pivotal role for the overall success of biorefineries. This paper aims to evaluate the ethanol production potential of four native strains of Scheffersomyces shehatae (syn. Candida shehatae) viz. S. shehatae BR6-2AI, CG8-8BY, PT1-1BASP and BR6-2AY, isolated from Brazilian forests. These strains were grown ...
متن کاملCellulosic Ethanol Production from Sugarcane Bagasse without Enzymatic Saccharification
Sugarcane processing generates a large volume of bagasse. Disposal of bagasse is critical for both agricultural profitability and environmental protection. Sugarcane bagasse is a renewable resource that can be used to produce ethanol and many other value-added products. In this study, we demonstrate that cane processed bagasse could be used to produce fuel grade ethanol without saccharification...
متن کاملEnhanced Production of Bioethanol by Fermentation of Autohydrolyzed and C4mimOAc-Treated Sugarcane Bagasse Employing Various Yeast Strains
This study examines the fermentation of autohydrolyzed and 1-n-butyl-3methylimidazolium acetate (C4mimOAc) pretreated sugarcane bagasse, using four different yeast strains to determine the efficiency of bioethanol production. Three strains of Saccharomyces cerevisiae (S. cerevisiae) and one of Scheffersomyces stipitis (S. stipitis) were employed in this study. It was observed that the sugarcane...
متن کامل