Recommendation with Differential Context Weighting
نویسندگان
چکیده
Context-aware recommender systems (CARS) adapt their recommendations to users’ specific situations. In many recommender systems, particularly those based on collaborative filtering, the contextual constraints may lead to sparsity: fewer matches between the current user context and previous situations. Our earlier work proposed an approach called differential context relaxation (DCR), in which different subsets of contextual features were applied in different components of a recommendation algorithm. In this paper, we expand on our previous work on DCR, proposing a more general approach – differential context weighting (DCW), in which contextual features are weighted. We compare DCR and DCW on two real-world datasets, and DCW demonstrates improved accuracy over DCR with comparable coverage. We also show that particle swarm optimization (PSO) can be used to efficiently determine the weights for DCW.
منابع مشابه
Differential Context Modeling in Collaborative Filtering
Context-aware recommender systems (CARS) try to adapt their recommendations to users’ specific contextual situations. In many recommender systems, particularly those based on collaborative filtering (CF), the additional contextual constraints may lead to increased sparsity in the user preference data, thus fewer matches between the current user context and previous situations. Our earlier work ...
متن کاملRecommendation Based on Contextual Opinions
Context has been recognized as an important factor in constructing personalized recommender systems. However, most contextaware recommendation techniques mainly aim at exploiting item-level contextual information for modeling users’ preferences, while few works attempt to detect more fine-grained aspect-level contextual preferences. Therefore, in this article, we propose a contextual recommenda...
متن کاملAn Indoor Positioning System Based on Wi-Fi for Energy Management in Smart Buildings
To offer indoor services to occupants in the context of smart buildings, it is necessary to consider information concerning to the identity and location of the occupants. This paper proposes an indoor positioning system (IPS) based on Wi-Fi fingerprint and K-nearest neighbors (KNN) method. The positioning of a mobile device (MD) using Wi-Fi technology involves online and offline phases. In this...
متن کاملThe Role of Emotions in Context-aware Recommendation
Context-aware recommender systems try to adapt to users’ preferences across different contexts and have been proven to provide better predictive performance in a number of domains. Emotion is one of the most popular contextual variables, but few researchers have explored how emotions take effect in recommendations – especially the usage of the emotional variables other than the effectiveness al...
متن کاملTask-Centric Document Recommendation via Context-Specific Terms
Context-specific document recommender systems rely on the accurate identification of context descriptors from unstructured textual information to identify highly relevant documents. In this paper, we propose two term-weighting measures, “normal distance” and “adjusted inverse polysemy”, to enable the retrieval of relevant documents with higher precision. We analyze the performance of the propos...
متن کامل