J-spectral factorization of regular para-Hermitian transfer matrices

نویسنده

  • Qing-Chang Zhong
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-spectral factorization of regular para-Hermitian transfer matrices

This paper characterizes a class of regular para-Hermitian transfer matrices and then reveals the elementary characteristics of J -spectral factorization for this class. A transfer matrix in this class admits a J -spectral factorization if and only if there exists a common nonsingular matrix to similarly transform the A-matrices of and −1, resp., into 2 × 2 lower (upper, resp.) triangular block...

متن کامل

J -spectral Factorization via Similarity Transformations

Abstract This paper characterizes a class of regular para-Hermitian transfer matrices and then studies the J-spectral factorization of this class using similarity transformations. A transfer matrix Λ in this class admits a J-spectral factorization if and only if there exists a common nonsingular matrix to similarly transform the A-matrices of Λ and Λ, resp., into 2 × 2 lower (upper, resp.) tria...

متن کامل

A Toeplitz algorithm for polynomial J-spectral factorization

A block Toeplitz algorithm is proposed to perform the J-spectral factorization of a para-Hermitian polynomial matrix. The input matrix can be singular or indefinite, and it can have zeros along the imaginary axis. The key assumption is that the finite zeros of the input polynomial matrix are given as input data. The algorithm is based on numerically reliable operations only, namely computation ...

متن کامل

New Design of Orthogonal Filter Banks Using the Cayley Transform

It is a challenging task to design orthogonal filter banks, especially multidimensional (MD) ones. In the onedimensional (1D) two-channel finite impulse response (FIR) filter bank case, several design methods exist. Among them, designs based on spectral factorizations (by Smith and Barnwell) and designs based on lattice factorizations (by Vaidyanathan and Hoang) are the most effective and widel...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2005