Neurobiology of Disease Rescuing qk Dysmyelination by a Single Isoform of the Selective RNA-Binding Protein QKI
نویسندگان
چکیده
Alternative splicing of the qkI transcript generates multiple isoforms of the selective RNA-binding protein QKI, which play key roles in controlling the homeostasis of their mRNA targets. QKI deficiency in oligodendrocytes of homozygous quakingviable (qk /qk ) mutant mice results in severe hypomyelination, indicating the essential function of QKI in myelinogenesis. However, the molecular mechanisms by which QKI controls myelination remain elusive. We report here that QKI-6 is the most abundant isoform in brain and is preferentially reduced in the qk /qk v mutant during normal myelinogenesis. To test whether QKI-6 is the predominant isoform responsible for advancing CNS myelination, we developed transgenic mice that express Flag-QKI-6 specifically in the oligodendroglia lineage, driven by the proteolipid protein (PLP) promoter. When introduced into the qk /qk v mutant, the QKI-6 transgene rescues the severe tremor and hypomyelination phenotype. Electron microscopic studies further revealed that the Flag-QKI-6 transgene is sufficient for restoring compact myelin formation with normal lamellar periodicity and thickness. Interestingly, Flag-QKI-6 preferentially associates with the mRNA encoding the myelin basic protein (MBP) and rescues MBP expression from the beginning of myelinogenesis. In contrast, Flag-QKI-6 binds the PLP mRNA with lower efficiency and has a minimal impact on PLP expression until much later, when the expression level of QKI-6 in the transgenic animal significantly exceeds what is needed for normal myelination. Together, our results demonstrate that QKI-6 is the major isoform responsible for CNS myelination, which preferentially promotes MBP expression in oligodendrocytes.
منابع مشابه
Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins.
Quakingviable (qk(v)) is a well known dysmyelination mutation. Recently, the genetic lesion of qk(v) has been defined as a deletion 5' to the qkI gene, which results in the severe reduction of the qkI-encoded QKI RNA-binding proteins in myelin-producing cells. However, no comprehensive model has been proposed regarding how the lack of QKI leads to dysmyelination. We hypothesized that QKI binds ...
متن کاملThe QKI-6 and QKI-7 RNA Binding Proteins Block Proliferation and Promote Schwann Cell Myelination
BACKGROUND The quaking viable (qk(v)) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qk(v) mice harbor an enhancer/promoter del...
متن کاملThe QKI-6 RNA Binding Protein Regulates Actin-interacting Protein-1 mRNA Stability during Oligodendrocyte Differentiation
The quaking viable (qk(v)) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qk(v) mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorga...
متن کاملA cytoplasmic quaking I isoform regulates the hnRNP F/H-dependent alternative splicing pathway in myelinating glia
The selective RNA-binding protein quaking I (QKI) plays important roles in controlling alternative splicing (AS). Three QKI isoforms are broadly expressed, which display distinct nuclear-cytoplasmic distribution. However, molecular mechanisms by which QKI isoforms control AS, especially in distinct cell types, still remain elusive. The quakingviable (qk(v)) mutant mice carry deficiencies of all...
متن کاملContrasting effects of ENU induced embryonic lethal mutations of the quaking gene.
Multiple alleles of the quaking (qk) gene have a variety of phenotypes ranging in severity from early embryonic death to viable dysmyelination. A previous study identified a candidate gene, QKI, that contains an RNA-binding domain and encodes at least three protein isoforms (QKI-5, -6 and -7). We have determined the genomic structure of QKI, identifying an additional alternative end in cDNAs. F...
متن کامل