Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.

نویسندگان

  • Jacob B Socolar
  • Peter N Epanchin
  • Steven R Beissinger
  • Morgan W Tingley
چکیده

Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifts in time and space interact as climate warms.

Beetles found on Mediterranean shores in cold periods turned up in Finland in mild interglacials (1). Paleontologists see such range shifts as systematic responses to changing climate. No surprise, then, that recent global trends for poleward and upward range shifts are attributed to current warming (2, 3). However, range shifts are not the only mechanism by which organisms can mitigate effects...

متن کامل

Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.

PREMISE OF THE STUDY The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate c...

متن کامل

An Eco-Evolutionary Model for Demographic and Phenological Responses in Migratory Birds

Many migratory birds have changed their timing of arrival at breeding grounds in response to recent climate change. Understanding the adaptive value and the demographic consequences of these shifts are key challenges. To address these questions we extend previous models of phenological adaptation to climate change under territory competition to include feedback from population dynamics, winter ...

متن کامل

Shifts in flowering phenology reshape a subalpine plant community.

Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky M...

متن کامل

Conservation Status of North American Birds in the Face of Future Climate Change

Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 49  شماره 

صفحات  -

تاریخ انتشار 2017