Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice.
نویسندگان
چکیده
To evaluate preventive effects of pioglitazone on pancreatic beta-cell damage in C57BL/KsJ db/db mice, an obese diabetic animal model, the pancreatic islets were compared morphologically between pioglitazone-treated (100 mg/kg daily po) and untreated db/db mice (n = 7 for each) after a 12-wk intervention (6-18 wk of age). The fasting blood glucose level was significantly improved by the treatment with pioglitazone (260 +/- 12 vs. 554 +/- 62 mg/dl, P < 0.05). The islet mass in the pancreas was significantly greater in pioglitazone-treated mice than in untreated mice (10.2 +/- 1.1 vs. 4.6 +/- 0.2 mg, P < 0.01). Subsequently, biochemical and physiological analyses of the beta-cell function were employed using pioglitazone-treated and untreated db/db mice (n = 6 for each) and pioglitazone-treated and untreated db/+ mice (n = 6 for each). After 2 wk of treatment (10-12 wk of age), the plasma levels of triglyceride and free fatty acid were significantly decreased, whereas the plasma adiponectin level increased significantly compared with the untreated group (65.2 +/- 18.0 vs. 18.3 +/- 1.3 microg/ml, P < 0.05). Pioglitazone significantly reduced the triglyceride content in the islets (43.3 +/- 3.6 vs. 65.6 +/- 7.6 ng/islet, P < 0.05) with improved glucose-stimulated insulin secretion. Pioglitazone showed no significant effects on the biochemical and physiological parameters in db/+ mice. The present study first demonstrated that pioglitazone prevents beta-cell damage in an early stage of the disease progression in db/db mice morphologically and physiologically. Our results suggest that pioglitazone improves glucolipotoxicity by increasing insulin sensitivity and reducing fat accumulation in the pancreatic islets.
منابع مشابه
Combination therapy with PPAR and PPAR agonists increases glucose-stimulated insulin secretion in db/db mice
[Full Text] [Abstract] , January 1, 2004; 286 (1): E116-E122. Am J Physiol Endocrinol Metab A. R. Diani, G. Sawada, B. Wyse, F. T. Murray and M. Khan murine models of type 2 diabetes Pioglitazone preserves pancreatic islet structure and insulin secretory function in three [PDF] [Full Text] [Abstract] , March 1, 2005; 288 (3): E510-E518. Am J Physiol Endocrinol Metab F. Kawasaki, M. Matsuda, ...
متن کاملMolecular mechanism by which pioglitazone preserves pancreatic β-cells in obese diabetic mice: evidence for acute and chronic actions as a PPARγ agonist
Pioglitazone preserves pancreatic beta-cell morphology and function in diabetic animal models. In this study, we investigated the molecular mechanisms by which pioglitazone protects beta-cells in diabetic db/db mice. In addition to the morphological analysis of the islets, gene expression profiles of the pancreatic islet were analyzed using laser capture microdissection and were compared with r...
متن کاملExpression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion.
Leptin, encoded for by the mouse ob gene, regulates feeding behavior and energy metabolism. Its receptor (Ob-R) is encoded by the mouse diabetic (db) gene and is mutated in the db/db mouse so that it lacks the cytoplasmic domain. We show that the full-length leptin receptor (Ob-Rb), which is believed to transmit the leptin signal, is expressed in pancreatic islets of ob/ob and wild-type mice, a...
متن کاملOxamate Improves Glycemic Control and Insulin Sensitivity via Inhibition of Tissue Lactate Production in db/db Mice.
Oxamate (OXA) is a pyruvate analogue that directly inhibits the lactate dehydrogenase (LDH)-catalyzed conversion process of pyruvate into lactate. Earlier and recent studies have shown elevated blood lactate levels among insulin-resistant and type 2 diabetes subjects and that blood lactate levels independently predicted the development of incident diabetes. To explore the potential of OXA in th...
متن کاملPioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes.
Thiazolidinediones may slow the progression of type 2 diabetes by preserving pancreatic beta-cells. The effects of pioglitazone (PIO) on structure and function of beta-cells in KKA(y), C57BL/6J ob/ob, and C57BL/KsJ db/db mice (genetic models of type 2 diabetes) were examined. ob/ob (n = 7) and db/db (n = 9) mice were randomly assigned to 50-125 mg.kg body wt-1.day-1 of PIO in chow beginning at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 288 3 شماره
صفحات -
تاریخ انتشار 2005