A New Approach for Mammogram Image Classification Using Fractal Properties

نویسندگان

  • S. Don
  • Duckwon Chung
  • K. Revathy
  • Eunmi Choi
  • Dugki Min
چکیده

Accurate classification of images is essential for the analysis of mammograms in computer aided diagnosis of breast cancer. We propose a new approach to classify mammogram images based on fractal features. Given a mammogram image, we first eliminate all the artifacts and extract the salient features such as Fractal Dimension (FD) and Fractal Signature (FS). These features provide good descriptive values of the region. Second, a trainable multilayer feed forward neural network has been designed for the classification purposes and we compared the classification test results with K-Means. The result reveals that the proposed approach can classify with a good performance rate of 98%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Features based on Differential Box Counting Method for the Categorization of Digital Mammograms

Computer aided diagnostic systems can assist radiologist in detecting breast cancer at an early stage with improved mammogram interpretation efficiency. In this paper, six fractal based features obtained from the fractal dimension computed using differential box counting method, are used for distinguishing between normal mammograms from the cancerous ones. The new fractal feature f6 derived fro...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Enhancement of Microcalcifications on Mammograms Using a Fractal Mo.deling Approach

The objective of this research is to model the mammographic parenchymal, ductal patterns and enhance microcalcifications using a fractal approach. According to the theory of deterministic fractal geometry, images can be modeled by deterministic fractal objects which are attractors of sets of two dimensional afflne transformations. In this paper, a methodology based on fractal image modeling is ...

متن کامل

Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012