Eecient Non-parametric Estimation of Probability Density Functions

نویسنده

  • Ashok Srinivasan
چکیده

Accurate and fast estimation of probability density functions is crucial for satisfactory computational performance in many scientiic problems. When the type of density is known a priori, then the problem becomes statistical estimation of parameters from the observed values. In the non-parametric case, usual estimators make use of kernel functions. If X j ; j = 1; 2; : : : ; n is a sequence of i.i.d. random variables with estimated probability density function f n , in the kernel method the computation of the values f n (X 1); f n (X 2); : : : ; f n (X n) requires O(n 2) operations, since each kernel needs to be evaluated at every X j. We propose a sequence of special weight functions for the non-parametric estimation of f which requires almost linear time: if m is a slowly growing function that increases without bound with n, our method requires only O(m 2 n) arithmetic operations. We derive conditions for convergence under a number of metrics, which turn out to be similar to those required for the convergence of kernel based methods. We also discuss experiments on diierent distributions and compare the eeciency and the accuracy of our computations with kernel based estimators for various values of n and m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین احتمال بزرگی زمین‌لغزش‌های رخ‌داده در حوزه آبخیز پیوه‌ژن (استان خراسان رضوی)

Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...

متن کامل

Kernel Density Estimation for An Anomaly Based Intrusion Detection System

This paper presents a new nonparametric method to simulate probability density functions of some random variables raised in characterizing an anomaly based intrusion detection system (ABIDS). A group of kernel density estimators is constructed and the criterions for bandwidth selection are discussed. In addition, statistical parameters of these distributions are computed, which can be used dire...

متن کامل

Density Estimation

Density Estimation: Deals with the problem of estimating probability density functions (PDFs) based on some data sampled from the PDF. May use assumed forms of the distribution, parameterized in some way (parametric statistics); or May avoid making assumptions about the form of the PDF (nonparametric statistics). We are concerned more here with the non-parametric case (see Roger Barlow’s lectur...

متن کامل

Wavelet-based non-parametric HMM's: theory and applications

In this paper, we propose a new algorithm for non-parametric estimation of hidden Markov models (HMM's). The algorithm is based on a \wavelet-shrinkage" density estimator for the state-conditional probability density functions of the HMM's. It operates in an iterative fashion, similar to the EM re-estimation formulae used for maximum likelihood estimation of parametric HMM's. We apply the resul...

متن کامل

Multivariate online kernel density estimation with Gaussian kernels

We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization scheme which maintains the KDE’s complexity low. We compare the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995