Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging

نویسندگان

  • Xianjin Cui
  • Salome Belo
  • Dirk Krüger
  • Yong Yan
  • Rafael T.M. de Rosales
  • Maite Jauregui-Osoro
  • Haitao Ye
  • Shi Su
  • Domokos Mathe
  • Noémi Kovács
  • Ildikó Horváth
  • Mariann Semjeni
  • Kavitha Sunassee
  • Krisztian Szigeti
  • Mark A. Green
  • Philip J. Blower
چکیده

Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [(18)F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for (18)F-fluoride and 100% for (64)Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of (18)F from NPs, but no sign of efflux of (64)Cu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in PET-MR Hybrid contrast agent

Introduction: All of the Imaging modalities have advantages and disadvantages alone. So if we want to have the best and perfect image, combining these modalities produces something we desired. PET-MR images consist of morphologic and metabolic data. MRI and PET provide high spatial and contrast resolution and high sensitivity and molecular information respectively. Hybrid PET-...

متن کامل

Synthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent

Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...

متن کامل

Radiolabeling and Biodistribution of new dual modality nanoparticle probe in Nuclear Medicine

Introduction: Dual-modality contrast agents, such as radiolabeled nanoparticles, are promising candidates for a number of diagnostic applications, namely SPECT imaging with MR imaging. So the aim of study was evaluating potential of Chitosan-Coated Magnetic Nanoparticles(SPION) labeled with 99mTc as new Dual-modality probes for liver Imaging. Materials and Methods:</st...

متن کامل

Synthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent

Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...

متن کامل

Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging.

We report a facile synthesis of bifunctional Fe3O4-Ag(125)I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced (125)I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2014