Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV.
نویسندگان
چکیده
Enterococcus faecalis is a commensal bacterium found in the gastrointestinal tract of most mammals, including humans, and is one of the leading causes of nosocomial infections. One of the hallmarks of E. faecalis pathogenesis is its unusual ability to tolerate high concentrations of lysozyme, which is an important innate immune component of the host. Previous studies have shown that the presence of lysozyme leads to the activation of SigV, an extracytoplasmic function (ECF) sigma factor in E. faecalis, and that the deletion of sigV increases the susceptibility of the bacterium toward lysozyme. Here, we describe the contribution of Eep, a membrane-bound zinc metalloprotease, to the activation of SigV under lysozyme stress by its effects on the stability of the anti-sigma factor RsiV. We demonstrate that the Δeep mutant phenocopies the ΔsigV mutant in lysozyme, heat, ethanol, and acid stress susceptibility. We also show, using an immunoblot analysis, that in an eep deletion mutant, the anti-sigma factor RsiV is only partially degraded after lysozyme exposure, suggesting that RsiV is processed by unknown protease(s) prior to the action of Eep. An additional observation is that the deletion of rsiV, which results in constitutive SigV expression, leads to chaining of cells, suggesting that SigV might be involved in regulating cell wall-modifying enzymes important in cell wall turnover. We also demonstrate that, in the absence of eep or sigV, enterococci bind significantly more lysozyme, providing a plausible explanation for the increased sensitivity of these mutants toward lysozyme.
منابع مشابه
The Extracytoplasmic Function Sigma Factor SigV Plays a Key Role in the Original Model of Lysozyme Resistance and Virulence of Enterococcus faecalis
BACKGROUND Enterococcus faecalis is one of the leading agents of nosocomial infections. To cause diseases, pathogens or opportunistic bacteria have to adapt and survive to the defense systems encountered in the host. One of the most important compounds of the host innate defense response against invading microorganisms is lysozyme. It is found in a wide variety of body fluids, as well as in cel...
متن کاملInteraction of Bacillus subtilis extracytoplasmic function (ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors.
Extracytoplasmic function (ECF) sigma factors constitute a diverse family of proteins, within the class of the sigma 70 subunit of RNA polymerase. Most members of the family studied to date are known to regulate gene expression in response to stress conditions. The Bacillus subtilis genome encodes at least 17 distinct sigma factors, seven of which are members of the ECF subfamily. Among these, ...
متن کاملSequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ.
Two regions with sizes 18,900 and 25,400 bp, which join previously known contigs containing levRDEFG, aadK and blt genes near 235 degrees of the Bacillus subtilis chromosome, were sequenced. Among others, two genes, which encode proteins homologous to RNA polymerase sigma-factors, were identified within this region. The gene products designated SigV and SigZ, show the highest homology with sigm...
متن کاملEvaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance
Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis ...
متن کاملEnterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance.
Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 195 14 شماره
صفحات -
تاریخ انتشار 2013