A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program.
نویسندگان
چکیده
During cardiac hypertrophy, the chief myocardial energy source switches from fatty acid beta-oxidation (FAO) to glycolysis-a reversion to fetal metabolism. The expression of genes encoding myocardial FAO enzymes was delineated in a murine ventricular pressure overload preparation to characterize the molecular regulatory events involved in the alteration of energy substrate utilization during cardiac hypertrophy. Expression of genes involved in the thioesterification, mitochondrial import, and beta-oxidation of fatty acids was coordinately down-regulated after 7 days of right ventricular (RV) pressure overload. Results of RV pressure overload studies in mice transgenic for the promoter region of the gene encoding human medium-chain acyl-CoA dehydrogenase (MCAD, which catalyzes a rate-limiting step in the FAO cycle) fused to a chloramphenicol acetyltransferase reporter confirmed that repression of MCAD gene expression in the hypertrophied ventricle occurred at the transcriptional level. Electrophoretic mobility-shift assays performed with MCAD promoter fragments and nuclear protein extracts prepared from hypertrophied and control RV identified pressure overload-induced protein/DNA interactions at a regulatory unit shown previously to confer control of MCAD gene transcription during cardiac development. Antibody "supershift" studies demonstrated that members of the Sp (Sp1, Sp3) and nuclear hormone receptor [chicken ovalbumin upstream promoter transcription factor (COUP-TF)/erbA-related protein 3] families interact with the pressure overload-responsive unit. Cardiomyocyte transfection studies confirmed that COUP-TF repressed the transcriptional activity of the MCAD promoter. The DNA binding activities and nuclear expression of Sp1/3 and COUP-TF in normal fetal mouse heart were similar to those in the hypertrophied adult heart. These results identify a transcriptional regulatory mechanism involved in the reinduction of a fetal metabolic program during pressure overload-induced cardiac hypertrophy.
منابع مشابه
Myocardin induces cardiomyocyte hypertrophy.
In response to stress signals, postnatal cardiomyocytes undergo hypertrophic growth accompanied by activation of a fetal gene program, assembly of sarcomeres, and cellular enlargement. We show that hypertrophic signals stimulate the expression and transcriptional activity of myocardin, a cardiac and smooth muscle-specific coactivator of serum response factor (SRF). Consistent with a role for my...
متن کاملNuclear Translocation of Cardiac G Protein-Coupled Receptor Kinase 5 Downstream of Select Gq-Activating Hypertrophic Ligands Is a Calmodulin-Dependent Process
G protein-Coupled Receptors (GPCRs) kinases (GRKs) play a crucial role in regulating cardiac hypertrophy. Recent data from our lab has shown that, following ventricular pressure overload, GRK5, a primary cardiac GRK, facilitates maladaptive myocyte growth via novel nuclear localization. In the nucleus, GRK5's newly discovered kinase activity on histone deacetylase 5 induces hypertrophic gene tr...
متن کاملI-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملApical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...
متن کاملThe CRM1 nuclear export receptor controls pathological cardiac gene expression.
Diverse pathological insults trigger a cardiac remodeling process during which myocytes undergo hypertrophy, with consequent decline in cardiac function and eventual heart failure. Multiple transcriptional regulators of pathological cardiac hypertrophy are controlled at the level of subcellular distribution. For example, prohypertrophic transcription factors belonging to the nuclear factor of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 12 شماره
صفحات -
تاریخ انتشار 1997